- 博客(7)
- 收藏
- 关注
原创 UniAD学习-nuscense数据集讲解
category(类别)、attibute(属性)、visibility(可见性)、instance(目标实例),sensor(传感器)、calibrated_sensor(表示传感器的内外参数信息)、ego_pose(车辆姿态)、log(日志)、scene(录制场景)、sample(样本)、sample_data(样本信息)、sample_annotation(样本标注)、map(地图)。接下来使用my_sample['data']可以获取sample的数据sample_data。
2025-03-12 17:32:17
411
原创 VSLAM各算法单元概述
在基于点云地图的构建中,通过三角测量等方法,根据相机位姿和特征点的匹配关系,计算特征点的三维坐标,将其添加到点云地图中。在基于里程计的运动模型中,通过车轮的转动信息或关节的运动数据来计算机器人的位移和旋转,为相机位姿估计提供先验信息。网络等,对目标物体进行建模和跟踪,能够在复杂背景和光照变化下准确跟踪目标,为位姿估计和地图构建提供稳定的特征对应关系,提高算法的实时性和鲁棒性。,将相机位姿和地图点作为图的节点,将观测约束作为边,通过优化图的能量函数来调整节点的状态,消除累积误差,提高系统的整体性能。
2025-03-12 17:31:08
945
原创 UniAD学习笔记-论文讲解
UniAD包含了两个感知的任务、两个预测的任务和一个规划的任务,感知任务分为目标跟踪和建图,预测任务分为运动预测和占据预测,整个模型通过查询Q来实现各任务与环境之间的交互。当前主流自动驾驶基于模块化设计,分为感知、融合、规划、控制等模块,这种设计简化了各个子模块的调优,但是也引入了新的问题,主要是模块之间的信息传递存在误差累积和任务优化不协调,UniAD将各个子模块整合到一个神经网络中,实现了基于结果的全局优化的效果,提升了模型能力的上限。
2025-02-27 17:52:39
152
原创 Optimizing Diffusion Models for Joint Trajectory Prediction and Controllable Generation论文讲解
Optimizing Diffusion Models for Joint Trajectory Prediction and Controllable Generation” 这篇论文提出了优化扩散模型的方法,以解决自动驾驶中联合轨迹预测和可控生成面临的计算效率问题,在相关任务上展现出良好性能。
2025-02-11 15:08:36
311
原创 自动驾驶领域成长方案
自动驾驶技术发展迅速,需持续学习。关注行业动态,定期阅读最新研究成果;参与技术社区,与同行交流;参加培训课程,提升技能。保持对新技术的好奇心和探索精神,不断学习新知识,提升解决问题的能力,以适应行业发展需求。成为自动驾驶领域专家,全面掌握自动驾驶技术体系,能独立进行自动驾驶系统设计、开发与优化,解决实际工程问题。
2025-02-07 17:41:01
867
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人