自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(7)
  • 收藏
  • 关注

原创 Fast R-CNN论文略读

SPP引入之后,解决了输入图片尺寸不一致和多次feed proposal带来的问题,但是训练过程仍然比较繁琐,需要提取proposal,训练cnn,还要训练SVM,分别输出box坐标和类别,且过程中要占用大量磁盘资源,为了解决这个问题,R-CNN原作者提出了Fast R-CNN,设计了ROIpooling,其实是SPP的简化版,不过也解决了尺寸问题,同时采用了SPP的proposal策略,同时将SVM换为softmax,从二分类转为多分类,引入类间竞争,也减少了不必要的训练;最重要的是将网络设计为同时输出两

2020-05-25 16:27:05 175

原创 SPPNet略读

论文:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition作者:何恺明时间:2014论文:https://arxiv.org/pdf/1406.4729.pdf为了解决固定尺寸的问题,引入空间金字塔池化,同时输入一张完整的图片,在featuremap上找到映射得到的proposal,而不是逐个输入,极大减少了时间开销,这也是R-CNN存在的问题。...

2020-05-25 16:03:47 159

原创 R-CNN略读

题目:Rich feature hierarchies for accurate object detection and semantic segmentation第一作者:Ross Girshick 大佬 UC Berkeley发表:CVPR2014这篇文章应该是受AlexNet的启发,进而想把CNN的强泛化与特征提取的能力应用到目标检测和语音分割上面,结果显然获得了巨大的成功,在PASCAL上的mAP达到了史无前例的53.3%,同时还发现在训练数据较小的时候,可以让网络在另外一个数据集上训练,然

2020-05-25 10:14:00 208

原创 FCOS源码阅读1

FCOS代码真的好多啊,一点一点分析好了,先来看看tools目录下的train_net.pydef train(cfg, local_rank, distributed): #local rank是啥,distributed就是给那些gpu暴发户用的吧 #得到一个model,这个函数在下一篇文章中看 model = build_detection_model(cfg) #torch.device代表将torch.Tensor分配到的设备的对象。 device = torch.d

2020-05-24 17:40:34 809

原创 FCOS论文简析

题目:FCOS:Fully Convolutional One-Stage Object Detection第一作者:Zhi Tian The University of Adelaide, Australia发表:CVPR2019论文:https://arxiv.org/pdf/1904.01355.pdf代码:https://github.com/tianzhi0549/FCOS思路:Anchor-based detectors有以下几个不足:检测的效果对与anchor box有关的超参数

2020-05-24 16:53:12 761

原创 matplotlib中的ion()和ioff()函数

在学习莫烦python的一些代码时发现经常出现plt.ion()和plt.ioff函数,经查询总结如下:python数据可视化库matplotlib有两种运行模式阻塞(block)模式和交互(interactive)模式,在python console中默认为交互模式,而在python脚本中是阻塞模式。1.在阻塞模式下,plt.plot()和plt.imshow()需要plt.show()...

2018-08-23 15:50:22 2863

转载 torch.squeeze()和unsqueeze()

queeze()函数功能:去除size为1的维度,包括行和列。当维度大于等于2时,squeeze()无作用。其中squeeze(0)代表若第一维度值为1则去除第一维度,squeeze(1)代表若第二维度值为1则去除第二维度。eg1:a = torch.Tensor(1,3)print a tensor([[-1.37,4.56,-3.57]])...

2018-08-22 11:43:44 27150

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除