FCOS论文简析

FCOS是一种创新的目标检测方法,它摒弃了传统的anchor box,解决了超参数敏感、正负样本不平衡及计算复杂度高等问题。通过采用全卷积结构,结合FPN和centerness策略,实现了高精度且高效的检测效果,具有良好的移植性和减少的冗余计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:FCOS:Fully Convolutional One-Stage Object Detection
第一作者:Zhi Tian The University of Adelaide, Australia
发表:CVPR2019
论文:https://arxiv.org/pdf/1904.01355.pdf
代码:https://github.com/tianzhi0549/FCOS

思路:Anchor-based detectors有以下几个不足:

  1. 检测的效果对与anchor box有关的超参数十分敏感,需要精心设计
  2. 对新的任务参数需要重新设计,移植性差
  3. 为了提高召回率而使用了大量anchor box,而大多数box会被标记为负样本,从而导致正负样本的不均衡
  4. 大量的anchor boxes导致训练和测试过程中大量繁杂的IoU计算

可以看出这些不足主要和anchor box有关,当然它也有效的提高了AP,那有没有一种方法在保持高AP的同时,又避免anchor box的缺点呢,一种思路是针对anchor box的缺点进行设计,比如自动设计anchor box的参数,解决不足1和2,当然也会有其他方法解决3和4,另一种思路就是像本文提出的FCOS一样,直接去掉anchor box,这样带来的好处如下:

  1. 可以复用其他FCN-solvable tasks比如语音分割的方法
  2. 极大减少了参数,避免了设计的困难
  3. 减少了冗余的计算
  4. 移植性好

网络结构:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值