Codeforces Round #271 (Div. 2)

D. Flowers
time limit per test
1.5 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

We saw the little game Marmot made for Mole's lunch. Now it's Marmot's dinner time and, as we all know, Marmot eats flowers. At every dinner he eats some red and white flowers. Therefore a dinner can be represented as a sequence of several flowers, some of them white and some of them red.

But, for a dinner to be tasty, there is a rule: Marmot wants to eat white flowers only in groups of size k.

Now Marmot wonders in how many ways he can eat between a and b flowers. As the number of ways could be very large, print it modulo1000000007 (109 + 7).

Input

Input contains several test cases.

The first line contains two integers t and k (1 ≤ t, k ≤ 105), where t represents the number of test cases.

The next t lines contain two integers ai and bi (1 ≤ ai ≤ bi ≤ 105), describing the i-th test.

Output

Print t lines to the standard output. The i-th line should contain the number of ways in which Marmot can eat between ai and bi flowers at dinner modulo 1000000007 (109 + 7).

Sample test(s)
input
3 2
1 3
2 3
4 4
output
6
5
5
Note
  • For K = 2 and length 1 Marmot can eat (R).
  • For K = 2 and length 2 Marmot can eat (RR) and (WW).
  • For K = 2 and length 3 Marmot can eat (RRR), (RWW) and (WWR).
  • For K = 2 and length 4 Marmot can eat, for example, (WWWW) or (RWWR), but for example he can't eat (WWWR).

我理解题目的能力实在太差了,一个小时都没看懂题目.....真不知道我四级是怎么过的....

题意:

一个由‘R’和‘W’构成的字符串中,w只能以连续k个存在,例如k=2,长度为4合法的字符串只有 RRWW   WWRR   WWWW RWWR RRRR,给出两个长度值a,b,问长度为[a,b]的串中合法的字符串有多少个。dp[i]第i位有多少种字符串,当第i位选R时则dp[i]=dp[i-1],当第i位选W时则dp[i]=dp[i-k],所以转移方程为dp[i]=dp[i-1]+dp[i-k]

感悟:

虽然这个dp不难,但是还是从不断WA,不断TLE中学到了很多,预处理使得o(n^2)算法降为o(n),主要是查询的时候变为o(1)!

先附上TLE代码:

        int t,k;
        cin>>t>>k;
        dp[0] = 1;
        for(int i =1; i <= 100000+5; i++)
        {
            if(i < k)  {
                dp[i] = 1;
                sum[i] = sum[i-1] +1;
            }
            else if(i == k)
                dp[k] = 2;
            else dp[i] = (dp[i-1] + dp[i - k])%mod;
        }

        while(t--)
        {
             int a,b;
             //cin>>a>>b;
             scanf("%d%d",&a,&b);
             LL sum = 0;
             for(int i = a; i <= b; i++)//这里最多会取t*(a-b)次模,相当于n^2,10^10,竟然没注意这是个o(n^2)的算法,我也是醉了QAQ
             {
                 sum += dp[i];
                 sum %= mod;
             }
            cout<<sum<<endl;

        }
AC代码

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include <algorithm>
#define LL  long long
const int mod = 1e9+7;
const int  maxn = 2000000+10;
using namespace std;
LL dp[maxn];
LL sum[maxn];
int main()
{

        int t,k;
        cin>>t>>k;
        dp[0] = 1;
        sum[0] = 0;
        for(int i = 1; i < k; i++)
        {
            dp[i] = 1;
            sum[i] = sum[i-1] + dp[i];
        }
        for(int i =k; i <= 100000+5; i++)
        {
                    dp[i] = (dp[i-1] + dp[i - k])%mod;
                    sum[i] = sum[i-1] + dp[i];
                    sum[i] %= mod;
        }
        while(t--)
        {
             int a,b;
           cin>>a>>b;
          cout<<(sum[b] - sum[a-1]+mod)%mod<<endl;//注意这里我也WA了好几发,sum[b]-sum[a-1]有可能是负数,因为一开始取模了有肯能取摸 后sum[b]<sum[a-1],比如b = 10006,a = 1005,b%10006 < a%10006,所以要加个mod

        }
    return 0;
}

从这到简单的dp涨了不少姿势,233333



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值