无聊的小明 | ||||||
| ||||||
Description | ||||||
小明想用两个字母a和b创造一个长度为n的单词,但是他又不希望连续的a超过p个,同时也不希望连续的b超过q个。那么小明有能创造出多少个不用的单词呢? | ||||||
Input | ||||||
每组数据包括一行,三个整数n,p,q分别对应题意。 其中max(a, b) <= n <= 50000,1 <= a, b <= 300。 | ||||||
Output | ||||||
输出不同的单词的个数。个数要对1000000007取模。 | ||||||
Sample Input | ||||||
3 2 1 | ||||||
Sample Output | ||||||
4 | ||||||
Source | ||||||
2014.11.29新生赛-热身赛 |
dp[i][j]表示长度为i 结尾数是j 的方案数量
ans[len]=dp[len][0]+dp[len][1](用0,1代替a,b)
状态转移方程:
dp[i][1]+=dp[i-j][0];
dp[i][0]+=dp[i-j][1];
举例子说明:
比如0最多只能连续不超过3个
xxxxxxxxxx10
xxxxxxxxx100
xxxxxxxx1000
这就表示结尾零的可能情况,
xxxxxxxxx100
xxxxxxxx1000
最后一个x必须是1
所以 dp[i][0]=dp[i-1][1]+dp[i-2][1]+dp[i-3][1]
#include <stdio.h>
#include <string.h>
const int N = 50005;
const int mod = 1e9+7;
int dp[N][2];
int main()
{
int n,a,b;
while(scanf("%d%d%d",&n,&a,&b)!=EOF)
{
memset(dp,0,sizeof(dp));
dp[0][1]=1;
dp[0][0]=1;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=i&&j<=a;j++)
{
dp[i][1]+=dp[i-j][0];
dp[i][1]%=mod;
}
for(int j=1;j<=i&&j<=b;j++)
{
dp[i][0]+=dp[i-j][1];
dp[i][0]%=mod;
}
}
printf("%d\n",(dp[n][0]+dp[n][1])%mod);
}
return 0;
}