题目地址点击打开链接
主旨大意:
给出一个数,写出以它为根节点的最小数和最大数
思路:
- 给出一棵二分搜索树,再给一个节点编号n,求以这个节点为根节点的子树叶子节点的最大值与最小值。若n是奇数,那么他必然是个叶子节点,最大最小都是他自己。否则求n所在的层数,他的层数就是他的因子中2的个数(规律),转化为求n的因子中2的个数。而2的个数取决于n的二进制表示中最后一个1所处的位置i,因为之前的某几个1,假设处于j(j>i),那么n可以表示为2^j+2^i+2^x(x>i且个数未定)=2^i*(1+2^(j-i)+2^(x-i)),看见米有,n必须有i个因子2.求出i的值后,即层数,可得n的左右各有num=2^i-1个儿孙(女),不信请看图,概不解释。那么最小值就是n-num,最大值就是n+num.那马怎么求num呢,这时就可以请出神奇的位运算了(以速度"嗖嗖嗖"的快而扬名ACM界),首先是确定二进制n后缀连续0的个数,这样想:怎么取出这i个0呢?其实不必考虑这个掣肘的问题,咱们直接跑到结果上考虑,就是求2^i-1,你花仙米有,这是个等差数列的前n项和:2^0+2^1+2^2+……+2^(i-1).那么这又是个什么形式呢,这就是二进制只有连续i个1的(其余都是前导0)数的十进制表示形式,OK,好办了,利用系统自动转换功能,咱们只需把这i个1罗列出来即可:把n的后i个0变成1,可采取如下形式n^(n|n-1),稍微解释下,n|n-1是将后i个0变成1,把第i+1个1变成0,然后和n抑或一下,得到什么?哈,就是2^i-1,即i个1的十进制形式!
- #include <cstdio>
- #include <math.h>
- using namespace std;
- int main(){
- int nCase;
- scanf("%d",&nCase);
- while(nCase--){
- int n;
- scanf("%d",&n);
- int k=n&(-n);
- k--;
- printf("%d %d\n",n-k,n+k);
- }
- return 0;
- }
普通方法:
#include<stdio.h> #include<string.h> #include<stdlib.h> int left(int a, int b) {return b ? left(a - b, b >> 1) : a;} int right(int a, int b) {return b ? right(a + b, b >> 1) : a;} int main() { int T, a, b; for(scanf("%d", &T); T --; ) { scanf("%d", &a); b = 1; while(a % b == 0) b <<= 1;//跳出后 b = 2 ^ ( a中2因子个数 + 1) printf("%d %d\n", left(a, b >> 2), right(a, b >> 2)); //b>>2是a每次要减去的数 ,b>>2 = 2 ^ (a中2因子个数 - 1) } return 0; }