后缀数组

     1. 概述

后缀数组是一种解决字符串问题的有力工具。相比于后缀树,它更易于实现且占用内存更少。在实际应用中,后缀数组经常用于解决字符串有关的复杂问题。

本文大部分内容摘自参考资料[1][2]。


2. 后缀数组

2.1   几个概念

(1)后缀数组SA 是一个一维数组,它保存1..n 的某个排列SA[1],SA[2],……,SA[n],并且保证Suffix(SA[i]) < Suffix(SA[i+1]),1≤i<n。也就是将S 的n 个后缀从小到大进行排序之后把排好序的后缀的开头位置顺次放入SA 中。其中,suffix(i)表示字符串s[i,i+1…n-1],即字符串s起始于第i个字符的后缀。

(2)名次数组Rank[i]保存的是Suffix(i)在所有后缀中从小到大排列的“名次”。

简单的说,后缀数组是“排第几的是谁?”,名次数组是“你排第几?”。容易看出,后缀数组和名次数组为互逆运算。

(3)height 数组:定义height[i]=suffix(SA[i-1])和suffix(SA[i])的最长公共前缀,也就是排名相邻的两个后缀的最长公共前缀。

(4) h[i]=height[rank[i]],也就是suffix(i)和在它前一名的后缀的最长公共前缀。

(5)LCP(i,j):对正整数i,j 定义LCP(i,j)=lcp(Suffix(SA[i]),Suffix(SA[j]),其中i,j 均为1 至n 的整数。LCP(i,j)也就是后缀数组中第i 个和第j 个后缀的最长公共前缀的长度。其中,函数lcp(u,v)=max{i|u=v},也就是从头开始顺次比较u 和v 的对应字符,对应字符持续�%@8等的最大位置,称为这两个字符串的最长公共前缀。

2.2   几个性质

(1)LCP(i,j)=min{height[k]|i+1≤k≤j},也就是说,计算LCP(i,j)等同于询问一维数组height 中下标在i+1 到j 范围内的所有元素的最小值。

证明略。

(2)对于i>1 且Rank[i]>1,一定有h[i]≥h[i-1]-1。

证明:设suffix(k)是排在suffix(i-1)前一名的后缀,则它们的最长公共前缀是h[i-1]。那么suffix(k+1)将排在suffix(i)的前面(这里要求h[i-1]>1,如果h[i-1]≤1,原式显然成立)并且suffix(k+1)和suffix(i)的最长公共前缀是h[i-1]-1,所以suffix(i)和在它前一名的后缀的最长公共前缀至少是h[i-1]-1。按照h[1],h[2],……,h[n]的顺序计算,并利用h 数组的性质,时间复杂度可以降为O(n)。

附模板一份:

int wa[maxn],wb[maxn],wv[maxn],ws[maxn];
int cmp(int *r,int a,int b,int l)
{return r[a]==r[b]&&r[a+l]==r[b+l];}  //就像论文所说,由于末尾填了0,所以如果r[a]==r[b](实际是y[a]==y[b]),说明待合并的两个长为j的字符串,前面那个一定不包含末尾0,因而后面这个的起始位置至多在0的位置,不会再靠后了,因而不会产生数组越界。
//da函数的参数n代表字符串中字符的个数,这里的n里面是包括人为在字符串末尾添加的那个0的,但论文的图示上并没有画出字符串末尾的0。
//da函数的参数m代表字符串中字符的取值范围,是基数排序的一个参数,如果原序列都是字母可以直接取128,如果原序列本身都是整数的话,则m可以取比最大的整数大1的值。
void da(int *r,int *sa,int n,int m)
{
    int i,j,p,*x=wa,*y=wb,*t;
    //以下四行代码是把各个字符(也即长度为1的字符串)进行基数排序,如果不理解为什么这样可以达到基数排序的效果,不妨自己实际用纸笔模拟一下,我最初也是这样才理解的。
    for(i=0;i<m;i++) ws[i]=0;
    for(i=0;i<n;i++) ws[x[i]=r[i]]++;  //x[]里面本意是保存各个后缀的rank值的,但是这里并没有去存储rank值,因为后续只是涉及x[]的比较工作,因而这一步可以不用存储真实的rank值,能够反映相对的大小即可。
    for(i=1;i<m;i++) ws[i]+=ws[i-1];
    for(i=n-1;i>=0;i--) sa[--ws[x[i]]]=i;  //i之所以从n-1开始循环,是为了保证在当字符串中有相等的字符串时,默认靠前的字符串更小一些。
    //下面这层循环中p代表rank值不用的字符串的数量,如果p达到n,那么各个字符串的大小关系就已经明了了。
    //j代表当前待合并的字符串的长度,每次将两个长度为j的字符串合并成一个长度为2*j的字符串,当然如果包含字符串末尾具体则数值应另当别论,但思想是一样的。
    //m同样代表基数排序的元素的取值范围
    for(j=1,p=1;p<n;j*=2,m=p)
    {
        //以下两行代码实现了对第二关键字的排序
        for(p=0,i=n-j;i<n;i++) y[p++]=i;  //结合论文的插图,我们可以看到位置在第n-j至n的元素的第二关键字都为0,因此如果按第二关键字排序,必然这些元素都是排在前面的。
        for(i=0;i<n;i++) if(sa[i]>=j) y[p++]=sa[i]-j;  //结合论文的插图,我们可以看到,下面一行的第二关键字不为0的部分都是根据上面一行的排序结果得到的,且上一行中只有sa[i]>=j的第sa[i]个字符串(这里以及后面指的“第?个字符串”不是按字典序排名来的,是按照首字符在字符串中的位置来的。若还是不太明白,想想这里sa[i]的意义,是指第i大子串在原串中的位置)的rank才会作为下一行的第sa[i]-j个字符串的第二关键字,而且显然按sa[i]的顺序rank[sa[i]]是递增的,因此完成了对剩余的元素的第二关键字的排序。
        //第二关键字基数排序完成后,y[]里存放的是按第二关键字排序的字符串下标
        for(i=0;i<n;i++) wv[i]=x[y[i]];  //这里相当于提取出每个字符串的第一关键字(前面说过了x[]是保存rank值的,也就是字符串的第一关键字),放到wv[]里面是方便后面的使用
        //以下四行代码是按第一关键字进行的基数排序
        for(i=0;i<m;i++) ws[i]=0;
        for(i=0;i<n;i++) ws[wv[i]]++;
        for(i=1;i<m;i++) ws[i]+=ws[i-1];
        for(i=n-1;i>=0;i--) sa[--ws[wv[i]]]=y[i];  //i之所以从n-1开始循环,含义同上,同时注意这里是y[i],因为y[i]里面才存着字符串的下标
        //下面两行就是计算合并之后的rank值了,而合并之后的rank值应该存在x[]里面,但我们计算的时候又必须用到上一层的rank值,也就是现在x[]里面放的东西,如果我既要从x[]里面拿,又要向x[]里面放,怎么办?当然是先把x[]的东西放到另外一个数组里面,省得乱了。这里就是用交换指针的方式,高效实现了将x[]的东西“复制”到了y[]中。
        for(t=x,x=y,y=t,p=1,x[sa[0]]=0,i=1;i<n;i++)
        x[sa[i]]=cmp(y,sa[i-1],sa[i],j)?p-1:p++; //这里就是用x[]存储计算出的各字符串rank的值了,记得我们前面说过,计算sa[]值的时候如果字符串相同是默认前面的更小的,但这里计算rank的时候必须将相同的字符串看作有相同的rank,要不然p==n之后就不会再循环啦。
    }
    return;
}

//能够线性计算height[]的值的关键在于h[](height[rank[]])的性质,即h[i]>=h[i-1]-1,下面具体分析一下这个不等式的由来。
//论文里面证明的部分一开始看得我云里雾里,后来画了一下终于搞明白了,我们先把要证什么放在这:对于第i个后缀,设j=sa[rank[i] - 1],也就是说j是i的按排名来的上一个字符串,按定义来i和j的最长公共前缀就是height[rank[i]],我们现在就是想知道height[rank[i]]至少是多少,而我们要证明的就是至少是height[rank[i-1]]-1。
//好啦,现在开始证吧。
//首先我们不妨设第i-1个字符串(这里以及后面指的“第?个字符串”不是按字典序排名来的,是按照首字符在字符串中的位置来的)按字典序排名来的前面的那个字符串是第k个字符串,注意k不一定是i-2,因为第k个字符串是按字典序排名来的i-1前面那个,并不是指在原字符串中位置在i-1前面的那个第i-2个字符串。
//这时,依据height[]的定义,第k个字符串和第i-1个字符串的公共前缀自然是height[rank[i-1]],现在先讨论一下第k+1个字符串和第i个字符串的关系。
//第一种情况,第k个字符串和第i-1个字符串的首字符不同,那么第k+1个字符串的排名既可能在i的前面,也可能在i的后面,但没有关系,因为height[rank[i-1]]就是0了呀,那么无论height[rank[i]]是多少都会有height[rank[i]]>=height[rank[i-1]]-1,也就是h[i]>=h[i-1]-1。
//第二种情况,第k个字符串和第i-1个字符串的首字符相同,那么由于第k+1个字符串就是第k个字符串去掉首字符得到的,第i个字符串也是第i-1个字符串去掉首字符得到的,那么显然第k+1个字符串要排在第i个字符串前面,要么就产生矛盾了。同时,第k个字符串和第i-1个字符串的最长公共前缀是height[rank[i-1]],那么自然第k+1个字符串和第i个字符串的最长公共前缀就是height[rank[i-1]]-1。
//到此为止,第二种情况的证明还没有完,我们可以试想一下,对于比第i个字符串的字典序排名更靠前的那些字符串,谁和第i个字符串的相似度最高(这里说的相似度是指最长公共前缀的长度)?显然是排名紧邻第i个字符串的那个字符串了呀,即sa[rank[i]-1]。也就是说sa[rank[i]]和sa[rank[i]-1]的最长公共前缀至少是height[rank[i-1]]-1,那么就有height[rank[i]]>=height[rank[i-1]]-1,也即h[i]>=h[i-1]-1。
//证明完这些之后,下面的代码也就比较容易看懂了。
int rank[maxn],height[maxn];
void calheight(int *r,int *sa,int n)
{
    int i,j,k=0;
    for(i=1;i<=n;i++) rank[sa[i]]=i;  //计算每个字符串的字典序排名
    for(i=0;i<n;height[rank[i++]]=k)  //将计算出来的height[rank[i]]的值,也就是k,赋给height[rank[i]]。i是由0循环到n-1,但实际上height[]计算的顺序是由height[rank[0]]计算到height[rank[n-1]]。
    for(k?k--:0,j=sa[rank[i]-1];r[i+k]==r[j+k];k++);  //上一次的计算结果是k,首先判断一下如果k是0的话,那么k就不用动了,从首字符开始看第i个字符串和第j个字符串前面有多少是相同的,如果k不为0,按我们前面证明的,最长公共前缀的长度至少是k-1,于是从首字符后面k-1个字符开始检查起即可。
    return;
}

//最后再说明一点,就是关于da和calheight的调用问题,实际上在“小罗”写的源程序里面是如下调用的,这样我们也能清晰的看到da和calheight中的int n不是一个概念,同时height数组的值的有效范围是height[1]~height[n]其中height[1]=0,原因就是sa[0]实际上就是我们补的那个0,所以sa[1]和sa[0]的最长公共前缀自然是0。
da(r,sa,n+1,128);
calheight(r,sa,n);



3. 后缀数组实现

本节给出高效计算SA,Rank,height和h的算法

(1) 计算名次数组Rank与后缀数组SA

采用倍增算法,先求出名次Rank,然后在O(n)时间内求得后缀数组SA。用倍增的方法对每个字符开始的长度为2^k 的子字符串进行排序,求出排名,即rank 值。k 从0 开始,每次加1,当2k 大于n 以后,每个字符开始的长度为2^k 的子字符串便相当于所有的后缀。并且这些子字符串都一定已经比较出大小,即rank 值中没有相同的值,那么此时的rank 值就是最后的结果。每一次排序都利用上次长度为2^(k-1) 的字符串的rank 值,那么长度为2^k 的字符串就可以用两个长度为2^(k-1) 的字符串的排名作为关键字表示,然后进行基数排序,便得出了长度为2k 的字符串的rank 值。以字符串“aabaaaab”为例,整个过程如下图所示。其中x、y 是表示长度为2k 的字符串的两个关键字。

(2) 计算数组h

可以令i从1 循环到n按照如下方法依次算出h[i]:

若 Rank[i]=1,则h[i]=0。字符比较次数为0。

若 i=1 或者h[i-1]≤1,则直接将Suffix(i)和Suffix(Rank[i]-1)从第一个字符开始依次比较直到有字符不相同,由此计算出h[i]。字符比较次数为h[i]+1,不超过h[i]-h[i-1]+2。

否则,说明i>1,Rank[i]>1,h[i-1]>1,根据性质2,Suffix(i)和Suffix(Rank[i]-1)至少有前h[i-1]-1 个字符是相同的,于是字符比较可以从h[i-1]开始,直到某个字符不相同,由此计算出h[i]。字符比较次数为h[i]-h[i-1]+2。

可求得最后算法复杂度为O(n)。


4. 后缀数组应用

4.1 单个字符串相关问题

(1) 可重叠最长重复子串。给定一个字符串,求最长重复子串,这两个子串可以重叠。

『解析』只需要求height 数组里的最大值即可。


(2) 不可重叠最长重复子串。给定一个字符串,求最长重复子串,这两个子串不能重叠。

『解析』先二分答案,把题目变成判定性问题:判断是否存在两个长度为k 的子串是相同的,且不重叠。解决这个问题的关键还是利用height 数组。把排序后的后缀分成若干组,其中每组的后缀之间的height 值都不小于k。例如,字符串为“aabaaaab”,当k=2 时,后缀分成了4 组:

容易看出,有希望成为最长公共前缀不小于k 的两个后缀一定在同一组。然后对于每组后缀,只须判断每个后缀的sa 值的最大值和最小值之差是否不小于k。如果有一组满足,则说明存在,否则不存在。整个做法的时间复杂度为O(nlogn)。

(PS:其实就是对height[]的一个分组,若height[]的一个连续区间里的值都大于等于k(不过,区间的第一个height[]值是小于k的,主要为了方便),就将这个区间的下标都存入一个组里,显然,若有不重叠的长度为k的子串,就可能是在这个组里,利用这个组里的sa[]的最大值和最小值之差是否大于等于k来判断就行了  )

相关题目: poj 1743


(3) 可重叠的k 次最长重复子串。给定一个字符串,求至少出现k 次的最长重复子串,这k 个子串可以重叠。

『解析』 先二分答案,然后将后缀分成若干组。不同的是,这里要判断的是有没有一个组的后缀个数不小于k。如果有,那么存在k 个相同的子串满足条件,否则不存在。这个做法的时间复杂度为O(nlogn)。

相关题目:poj 3261


(4) 最长回文子串。给定一个字符串,求最长回文子串。

『解析』 将整个字符串反过来写在原字符串后面,中间用一个特殊的字符隔开。这样就把问题变为了求这个新的字符串的某两个后缀的最长公共前缀。

相关题目:ural 1297   


(5) 连续重复子串。给定一个字符串L,已知这个字符串是由某个字符串S 重复R 次而得到的,求R 的最大值。

『解析』穷举字符串S 的长度k,然后判断是否满足。判断的时候,先看字符串L 的长度能否被k 整除,再看suffix(1)和suffix(k+1)的最长公共前缀是否等于n-k。在询问最长公共前缀的时候,suffix(1)是固定的,所以RMQ问题没有必要做所有的预处理, 只需求出height 数组中的每一个数到height[rank[1]]之间的最小值即可。整个做法的时间复杂度为O(n)。


(6) 重复次数最多的连续重复子串。给定一个字符串,求重复次数最多的连续重复子串。

『解析』先穷举长度L,然后求长度为L 的子串最多能连续出现几次。首先连续出现1 次是肯定可以的,所以这里只考虑至少2 次的情况。假设在原字符串中连续出现2 次,记这个子字符串为S,那么S 肯定包括了字符r[0], r[L], r[L*2],r[L*3], ……中的某相邻的两个。所以只须看字符r[L*i]和r[L*(i+1)]往前和往后各能匹配到多远,记这个总长度为K,那么这里连续出现了K/L+1 次。最后看最大值是多少。

穷举长度L 的时间是n,每次计算的时间是n/L。所以整个做法的时间复杂度是O(n/1+n/2+n/3+……+n/n)=O(nlogn)。

相关题目:poj 3693


4.2 两个字符串相关问题

(1) 最长公共子串。给定两个字符串A 和B,求最长公共子串。

『解析』先将第二个字符串写在第一个字符串后面,中间用一个没有出现过的字符隔开,再求这个新的字符串的后缀数组。当suffix(sa[i-1]) 和suffix(sa[i])不是同一个字符串中的两个后缀时,max{height[i]}才是满足条件

相关题目:poj 2774


(2) 长度不小于k 的公共子串的个数。给定两个字符串A 和B,求长度不小于k 的公共子串的个数(可以相同)。

『解析』基本思路是计算A 的所有后缀和B 的所有后缀之间的最长公共前缀的长度,把最长公共前缀长度不小于k 的部分全部加起来。先将两个字符串连起来,中间用一个没有出现过的字符隔开。按height 值分组后,接下来的工作便是快速的统计每组中后缀之间的最长公共前缀之和。扫描一遍,每遇到一个B 的后缀就统计与前面的A 的后缀能产生多少个长度不小于k 的公共子串,这里A 的后缀需要用一个单调的栈来高效的维护。然后对A 也这样做一次。

相关题目:poj 3415


4.3 多个字符串相关问题

(1) 不小于k 个字符串中的最长子串。给定n 个字符串,求出现在不小于k 个字符串中的最长子串。

『解析』将n 个字符串连起来,中间用不相同的且没有出现在字符串中的字符隔开,求后缀数组。然后二分答案:将后缀分成若干组,判断每组的后缀是否出现在不小于k 个的原串中。这个做法的时间复杂度为O(nlogn)。

(2) 每个字符串至少出现两次且不重叠的最长子串。给定n 个字符串,求在每个字符串中至少出现两次且不重叠的最长子串。

『解析』做法和上题大同小异,也是先将n 个字符串连起来,中间用不相同的且没有出现在字符串中的字符隔开,求后缀数组。然后二分答案,再将后缀分组。判断的时候,要看是否有一组后缀在每个原来的字符串中至少出现两次,并且在每个原来的字符串中,后缀的起始位置的最大值与最小值之差是否不小于当前答案(判断能否做到不重叠,如果题目中没有不重叠的要求,那么不用做此判断)。这个做法的时间复杂度为O(nlogn)。

(3) 出现或反转后出现在每个字符串中的最长子串。给定n 个字符串,求出现或反转后出现在每个字符串中的最长子串。

『解析』这题不同的地方在于要判断是否在反转后的字符串中出现。其实这并没有加大题目的难度。只需要先将每个字符串都反过来写一遍,中间用一个互不相同的且没有出现在字符串中的字符隔开,再将n 个字符串全部连起来,中间也是用一个互不相同的且没有出现在字符串中的字符隔开,求后缀数组。然后二分答案,再将后缀分组。判断的时候,要看是否有一组后缀在每个原来的字符串或反转后的字符串中出现。这个做法的时间复杂度为O(nlogn)。


5. 总结

后缀数组实际上可以看作后缀树的所有叶结点按照从左到右的次序排列放入数组中形成的,所以后缀数组的用途不可能超出后缀树的范围。甚至可以说,如果不配合LCP,后缀数组的应用范围是很狭窄的。但是LCP 函数配合下的后缀数组就非常强大,可以完成大多数后缀树所能完成的任务,因为LCP 函数实际上给出了任意两个叶子结点的最近公共祖先,这方面的内容大家可以自行研究。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值