POJ-1061-青蛙的约会(扩展欧几里得)

青蛙的约会

Description

两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。 
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。 

Input

输入只包括一行5个整数x,y,m,n,L,其中x≠y < 2000000000,0 < m、n < 2000000000,0 < L < 2100000000。

Output

输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行"Impossible"

Sample Input

1 2 3 4 5

Sample Output

4


做的第一道扩展欧几里得的题目。。。借着这道题目小研究了一下扩展欧几里得算法。。

研究成果:http://blog.csdn.net/u013476556/article/details/38424877

这个题的意思就不用说了,,,,关键是找到方程   ( x + m * s)  - (y + n * s)  == p * l; 

经过转化之后就成了  (m - n) * s - p * l == x - y;

设 a = m - n,b = l ,c= x - y;于是便得到了 a * s - b *p == c ---------多么熟悉的方程。。

直接套用exgcd 就可以得到一组解  由于题目要求的是最少的步数 也就是方程的s ,注意是最小的。。

我们已经得到了 方程所有解得式子:x=x0+b/d*t  ( x0是通过exgcd求出来的,d为gcd( a , b ) ) 

那么最小的该怎么求呢?

(( x - y ) / gcd * X % l  + l) % l   (x,y是输入的初始值  X,是通过exgcd求出来的解 l是输入的长度)







#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <iostream>
#define LL long long
using namespace std;

LL x , y , m , n , l , a , b , c , X , Y , r , t ;

LL gcd (LL a,LL b)
{
    if ( b == 0 )
        return a;
    return gcd (b, a%b);
}

void exgcd (LL a,LL b )
{
    if (b == 0)
    {
        X = 1;
        Y = 0;
        return ;
    }
    exgcd (b, a % b);
    LL t;
    t = X;
    X = Y;
    Y = t - a / b * Y;
}

int main ()
{
    while (~scanf ("%lld%lld%lld%lld%lld",&x,&y,&m,&n,&l))
    {
        a = n - m ;
        b = l ;
        c = x - y ;
        r = gcd ( a , b ) ;
        if (c % r )
        {
            printf ("Impossible\n");
            continue;
        }

        exgcd ( a , b );

        int kkk = (c / r * X % l + l) % l;
        printf ("%d\n",kkk);
    }
    return 0;
}





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值