青蛙的约会
Description
两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。
Input
输入只包括一行5个整数x,y,m,n,L,其中x≠y < 2000000000,0 < m、n < 2000000000,0 < L < 2100000000。
Output
输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行"Impossible"
Sample Input
1 2 3 4 5
Sample Output
4
做的第一道扩展欧几里得的题目。。。借着这道题目小研究了一下扩展欧几里得算法。。
研究成果:http://blog.csdn.net/u013476556/article/details/38424877
这个题的意思就不用说了,,,,关键是找到方程 ( x + m * s) - (y + n * s) == p * l;
经过转化之后就成了 (m - n) * s - p * l == x - y;
设 a = m - n,b = l ,c= x - y;于是便得到了 a * s - b *p == c ---------多么熟悉的方程。。
直接套用exgcd 就可以得到一组解 由于题目要求的是最少的步数 也就是方程的s ,注意是最小的。。
我们已经得到了 方程所有解得式子:x=x0+b/d*t ( x0是通过exgcd求出来的,d为gcd( a , b ) )
那么最小的该怎么求呢?
(( x - y ) / gcd * X % l + l) % l (x,y是输入的初始值 X,是通过exgcd求出来的解 l是输入的长度)
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <iostream>
#define LL long long
using namespace std;
LL x , y , m , n , l , a , b , c , X , Y , r , t ;
LL gcd (LL a,LL b)
{
if ( b == 0 )
return a;
return gcd (b, a%b);
}
void exgcd (LL a,LL b )
{
if (b == 0)
{
X = 1;
Y = 0;
return ;
}
exgcd (b, a % b);
LL t;
t = X;
X = Y;
Y = t - a / b * Y;
}
int main ()
{
while (~scanf ("%lld%lld%lld%lld%lld",&x,&y,&m,&n,&l))
{
a = n - m ;
b = l ;
c = x - y ;
r = gcd ( a , b ) ;
if (c % r )
{
printf ("Impossible\n");
continue;
}
exgcd ( a , b );
int kkk = (c / r * X % l + l) % l;
printf ("%d\n",kkk);
}
return 0;
}