青蛙的约会 POJ - 1061 扩展欧几里得

版权声明:低调地前行,越努力越幸运! https://blog.csdn.net/SSYITwin/article/details/79966447
         两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。
Input
输入只包括一行5个整数x,y,m,n,L,其中x≠y < 2000000000,0 < m、n < 2000000000,0 < L < 2100000000。
Output
输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行"Impossible"
Sample Input
1 2 3 4 5
Sample Output

4

#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
typedef long long LL;

LL exgcd(LL a,LL b,LL &x,LL &y)
 {
    if(!b)
        {
        x=1;
        y=0;
        return a;
    }
    LL d=exgcd(b,a%b,x,y);
    LL t=x;
    x=y;
    y=(t-a/b*y);
    return d;
}

int main() {
    LL x,y,m,n,L,X,Y;
    while(scanf("%lld%lld%lld%lld%lld",&x,&y,&m,&n,&L)!=EOF)
        {
        LL lway=x-y;  //xy表示的是两只青蛙之间的开始距离
        LL d=exgcd(n-m,L,X,Y);  //找步数与圈长之间的最大公约数
        if(lway%d!=0||m==n)  //没有最大公约数就说明不可以达到
        {
            printf("Impossible\n");
            continue;
        }
        LL r=L/d;       //总圈长度除以最大公约数
        LL ans=lway/d*X;     //求出的X要乘以(lway/exgcd(n-m,L,X,Y))  因为x是ax+by=exgcd(n-m,L,X,Y)的解,而且x不一定是最小的一个,我们这里要求出最少次数,那么肯定是要求出最小的一个。
        printf("%lld\n",(ans%r+r)%r);   //防止取模后变成负数。
    }
    return 0;
}

阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页