UESTC 250 windy数(数位DP)

UESTC 250 windy数(数位DP)

http://acm.uestc.edu.cn/#/problem/show/250

题意:求区间[A,B]之间的,不含前导0,且相邻两数位之间相差至少为2的正整数有多少个.

分析:令f[i][j]表示长度为i且最高位为j的windy数有多少个.

f[0][0]=0

这里要注意如果长度len>=2时,那么:

f[i][len+1]+=f[j][len]  i与j之差>=2

如果len==1,那么:

f[i][len+1] +=1  i与j之差>=2

 AC代码:

#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstdio>
#include<cstring>
using namespace std;
int f[15][10];
int digit[15];
void init()
{
    memset(f,0,sizeof(f));
    for(int i=0;i<=9;i++)
            f[1][i]=1;
    for(int len=2;len<=14;len++)
        for(int i=0;i<=9;i++)
            for(int j=0;j<=9;j++)if(abs(i-j)>=2)
                f[len][i] += f[len-1][j];
}
int cal(int n)
{
    int len=0;
    while(n)
    {
        digit[++len] = n%10;
        n/=10;
    }
    digit[len+1]=0;
    if(len==0) return 0;

    int ans=0;
    for(int i=1;i<len;i++)//先把长度小于len的计入
        for(int j=1;j<=9;j++)
            ans+=f[i][j];
    for(int j=1;j<digit[len];j++)//最高位
        ans+=f[len][j];

    int i;
    for(i=len-1;i>=1;i--)
    {
        for(int j=0;j<digit[i];j++)if(i==len || (i<len && abs(digit[i+1]-j)>=2) )
                ans += f[i][j];
        if(abs(digit[i]-digit[i+1])<2)
            break;
    }
    if(i==0) ans++;
    return ans;
}
int main()
{
    int n,m;
    init();
    while(scanf("%d%d",&n,&m)==2&&n&&m)
    {
        int ans=0;
        ans-=cal(n-1);
        ans+=cal(m);
        printf("%d\n",ans);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值