UESTC 250 windy数(数位DP)
http://acm.uestc.edu.cn/#/problem/show/250
题意:求区间[A,B]之间的,不含前导0,且相邻两数位之间相差至少为2的正整数有多少个.
分析:令f[i][j]表示长度为i且最高位为j的windy数有多少个.
f[0][0]=0
这里要注意如果长度len>=2时,那么:
f[i][len+1]+=f[j][len] i与j之差>=2
如果len==1,那么:
f[i][len+1] +=1 i与j之差>=2
AC代码:
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstdio>
#include<cstring>
using namespace std;
int f[15][10];
int digit[15];
void init()
{
memset(f,0,sizeof(f));
for(int i=0;i<=9;i++)
f[1][i]=1;
for(int len=2;len<=14;len++)
for(int i=0;i<=9;i++)
for(int j=0;j<=9;j++)if(abs(i-j)>=2)
f[len][i] += f[len-1][j];
}
int cal(int n)
{
int len=0;
while(n)
{
digit[++len] = n%10;
n/=10;
}
digit[len+1]=0;
if(len==0) return 0;
int ans=0;
for(int i=1;i<len;i++)//先把长度小于len的计入
for(int j=1;j<=9;j++)
ans+=f[i][j];
for(int j=1;j<digit[len];j++)//最高位
ans+=f[len][j];
int i;
for(i=len-1;i>=1;i--)
{
for(int j=0;j<digit[i];j++)if(i==len || (i<len && abs(digit[i+1]-j)>=2) )
ans += f[i][j];
if(abs(digit[i]-digit[i+1])<2)
break;
}
if(i==0) ans++;
return ans;
}
int main()
{
int n,m;
init();
while(scanf("%d%d",&n,&m)==2&&n&&m)
{
int ans=0;
ans-=cal(n-1);
ans+=cal(m);
printf("%d\n",ans);
}
return 0;
}