POJ 1088 滑雪(DFS+DP)

POJ 1088 滑雪(DFS+DP)

http://poj.org/problem?id=1088

题意:

        给你一个R*C的数字矩阵,要你找出矩阵中一条递减的最长路径的长度。即从矩阵的一个点出发(起点任意),只能走数字递减的上下左右4格中的一格,能走的最长距离(包括起点).

分析:

       首先我们令len[r][c]表示从(r,c)点出发的最长路径长度.

       可以知道如下状态转移方程:

       len[r][c]= max(len[r+1][c], len[r-1][c], len[r][c-1],len[r][c+1])+1.

       注意上面的方程转移的条件是(r,c)点的数字比它4个方向的数字都大,如果某个方向不满足该条件,则不可转移.

       如果本题用递推的方式来做,还不太好做。

AC代码:记忆化搜索

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=100+5;
int dr[]={-1,1,0,0};
int dc[]={0,0,-1,1};
int map[maxn][maxn];
int len[maxn][maxn];
int R,C;
int dp(int r,int c)
{
    if(len[r][c]!=0) return len[r][c];
    len[r][c]=1;
    for(int d=0;d<4;d++)
    {
        int nr=r+dr[d], nc=c+dc[d];
        if(nr<=0||nr>R||nc<=0||nc>C||map[nr][nc]>=map[r][c]) continue;
        len[r][c]=max(dp(nr,nc)+1,len[r][c]);
    }
    return len[r][c];
}
int main()
{
    while(scanf("%d%d",&R,&C)==2)
    {
        int ans=1;
        memset(len,0,sizeof(len));
        for(int i=1;i<=R;i++)
        for(int j=1;j<=C;j++)
            scanf("%d",&map[i][j]);
        for(int i=1;i<=R;i++)
        for(int j=1;j<=C;j++)
        {
            len[i][j]=dp(i,j);
            ans=max(ans,len[i][j]);
        }
        printf("%d\n",ans);
    }
    return 0;
}


  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 给出一个$n\times m$的矩阵,每个位置上有一个非负整数,代表这个位置的海拔高度。一开始时,有一个人站在其中一个位置上。这个人可以向上、下、左、右四个方向移动,但是只能移动到海拔高度比当前位置低或者相等的位置上。一次移动只能移动一个单位长度。定义一个位置为“山顶”,当且仅当从这个位置开始移动,可以一直走到海拔高度比它低的位置上。请问,这个矩阵中最多有多少个“山顶”? 输入格式 第一行两个整数,分别表示$n$和$m$。 接下来$n$行,每行$m$个整数,表示整个矩阵。 输出格式 输出一个整数,表示最多有多少个“山顶”。 样例输入 4 4 3 2 1 4 2 3 4 3 5 6 7 8 4 5 6 7 样例输出 5 算法1 (递归dp) $O(nm)$ 对于这道题,我们可以使用递归DP来解决,用$f(i,j)$表示以$(i,j)$为起点的路径最大长度,那么最后的答案就是所有$f(i,j)$中的最大值。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码 算法2 (动态规划) $O(nm)$ 动态规划的思路与递归DP类似,只不过转移方程和实现方式有所不同。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值