HDU 1824 Let's go home(2-SAT)
http://acm.hdu.edu.cn/showproblem.php?pid=1824
题意:
集训是辛苦的,道路是坎坷的,休息还是必须的。经过一段时间的训练,lcy决定让大家回家放松一下,但是训练还是得照常进行,lcy想出了如下回家规定,每一个队(三人一队)或者队长留下或者其余两名队员同时留下;每一对队员,如果队员A留下,则队员B必须回家休息下,或者B留下,A回家。由于今年集训队人数突破往年同期最高记录,管理难度相当大,lcy也不知道自己的决定是否可行,所以这个难题就交给你了,呵呵,好处嘛~,免费**漂流一日。
分析:
其实就是简单的2-SAT问题判断,每个人有两种选择:留=0或走=1.
然后该2-SAT要满足两类条件,第一类是 队长留 or 另外两个队员留.
第二类是由M指出的 一对队员a和b的冲突条件.
假设a b c 组成一个队,且a是队长,那么由于队长a与队员(b,c)组合二者只能选其一,
所以对于任何人留下的话有下面关系:
add(a,0,b,1)add(a,0,c,1) add(b,0,a,1) add(b,0,c,0) add(c,0,b,0) add(c,0,a,1)
对于任何人走的话有下面关系:
add(a,1,b,0)add(a,1,c,0) add(b,1,a,0) add(b,1,c,1) add(c,1,a,0) add(c,1,b,1)
对于另外M个条件的a与b来说有:
add(a,0,b,1)add(b,0,a,1)
AC代码:
#include<cstdio>
#include<cstring>
#include<vector>
#include<algorithm>
using namespace std;
const int maxn= 3000+10;
struct TwoSAT
{
int n;
vector<int> G[maxn*2];
int S[maxn*2],c;
bool mark[maxn*2];
bool dfs(int x)
{
if(mark[x^1]) return false;
if(mark[x]) return true;
mark[x]= true;
S[c++]=x;
for(int i=0;i<G[x].size();i++)
if(!dfs(G[x][i])) return false;
return true;
}
void init(int n)
{
this->n=n;
for(int i=0;i<2*n;i++) G[i].clear();
memset(mark,0,sizeof(mark));
}
void add_clause(int x,int xval,int y,int yval)
{
x=x*2+xval;
y=y*2+yval;
G[x].push_back(y);
}
bool solve()
{
for(int i=0;i<2*n;i+=2)
if(!mark[i] && !mark[i+1])
{
c=0;
if(!dfs(i))
{
while(c>0) mark[S[--c]]=false;
if(!dfs(i+1)) return false;
}
}
return true;
}
}TS;
int main()
{
int T,m;
while(scanf("%d%d",&T,&m)==2)
{
TS.init(T*3);
for(int i=0;i<T;i++)
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
TS.add_clause(a,0,b,1);
TS.add_clause(a,0,c,1);
TS.add_clause(b,0,a,1);
TS.add_clause(b,0,c,0);
TS.add_clause(c,0,a,1);
TS.add_clause(c,0,b,0);
TS.add_clause(a,1,b,0);
TS.add_clause(a,1,c,0);
TS.add_clause(b,1,a,0);
TS.add_clause(b,1,c,1);
TS.add_clause(c,1,a,0);
TS.add_clause(c,1,b,1);
}
for(int i=0;i<m;i++)
{
int a,b;
scanf("%d%d",&a,&b);
TS.add_clause(a,0,b,1);
TS.add_clause(b,0,a,1);
}
printf("%s\n",TS.solve()?"yes":"no");
}
return 0;
}