URAL Goat in the Garden(圆与矩形求交集面积)

本文详细介绍了如何计算一个圆在正方形草地内所能覆盖的面积,涉及圆与正方形相交的情况分析及相应算法实现。通过解析不同圆绳长度与正方形边长的关系,计算出覆盖区域面积。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

URAL Goat in the Garden(圆与矩形求交集面积)

http://acm.timus.ru/problem.aspx?space=1&num=1084

题意:

       一些人让一只山羊到一个方形的草地上并且把它绑在了一个棒子上。这个棒子被钉在了这个正方形的正中间。山羊很饿很贪婪,把所有它能够到的在正方形里的草都吃了。草地的哪个区域会被吃掉?

分析:

       根据绳子的长R和正方形边长的一半h,可以分为下面三种情况:

       R<=h时, 所求为圆面积 R^2*π.

       R*R>=2*h*h时(其实就是R>=正方形对角线长时),所求为正方形面积4*R*R.

       R>h且R*R<2*h*h时,所求为圆形面积减去 4个弓形的面积,如下图所示:

其中弓形面积= 扇形面积-三角形面积.

AC代码:

#include<cstdio>
#include<cmath>
using namespace std;
const double PI=acos(-1.0);
double r,h;

int main()
{
    while(scanf("%lf%lf",&h,&r)==2)
    {
        h/=2;
        double ans=0;
        if(h>=r) ans=PI*r*r;//矩形包围圆
        else if(r*r>=2*h*h) ans=4*h*h;//圆包围矩形
        else//圆与矩形相交
        {
            double area=acos(h/r)*r*r-h*sqrt(r*r-h*h);//弓形面积
            ans = PI*r*r-4*area;
        }
        printf("%.3lf\n",ans);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值