URAL 1192 Ball in a Dream(抛物线运动)
题意:
有一个小球,从与地面夹角为@(角度不是弧度)的度数,以初始速度v运动,当它落地时再弹起来,动能变成之前的1/K了. 不过当它弹起时,它与地面的夹角 等于 它落地时与地面的夹角. 问你小球最远能弹多远(水平距离)?
分析:
首先小球每两次弹起的运动都是标准的抛物线运动,且是对称的抛物线(因为没有空气阻力,小球只在与地面撞击的时候速度才会变小).所以如果已知某次小球初速度为v,与地面夹角为r(弧度)时,那么小球在下一次撞击地面前能走多远距离呢?
那么我们知道了小球一次运动的水平距离,那么小球每次动能变成之前的1/K. 由于动能=系数*V^2. 所以小球的速度每次变成之前的1/(K^(1/2)). 且小球每次弹起的角度都不变,都是r.
这样我们就能求出小球总的水平运动距离了.
AC代码:
#include<cstdio>
#include<cmath>
using namespace std;
const double PI=3.1415926535;
double v,r,k;
int main()
{
while(scanf("%lf%lf%lf",&v,&r,&k)==3)
{
double S=0;//总的运动水平距离
r=r/180*PI;//转换成弧度
while(v>0.01)
{
S+=v*v/10.0*sin(2*r);
v=v/sqrt(k);
}
printf("%.2lf\n",S);
}
return 0;
}