大家好呀,我是 Rocky0429。
Python 面试的时候,会涉及到很多的八股文,我结合自己的经验,整理Python 最强面试题。
Python 最强面试题主要包括以下几方面:
- Python 基础(已完成)
- Python 进阶(已完成)
- Python 后台开发
- 爬虫
- 机器学习
对每道面试题会附带详细的答案,无论是准备面试还是自己学习,这份面试题绝对值得你去看,去学习。
1、Python 中类方法、类实例方法、静态方法有何区别?
类方法:是类对象的方法,在定义时需要在上方使用“@classmethod”进行装饰,形参为 cls,表示类对象,类对象和实例对象都可调用
类实例方法:是类实例化对象的方法,只有实例对象可以调用,形参为 self,指代对象本身
静态方法:是一个任意函数,在其上方使用“@staticmethod”进行装饰,可以用对象直接调用,静态方法实际上跟该类没有太大关系
2、Python 的内存管理机制及调优手段?
内存管理机制:引用计数、垃圾回收、内存池。
引用计数
引用计数是一种非常高效的内存管理手段, 当一个 Python 对象被引用时其引用计数增加 1, 当其不再被一个变量引用时则计数减 1. 当引用计数等于 0 时对象被删除。
垃圾回收
(1) 引用计数
引用计数也是一种垃圾收集机制,而且也是一种最直观,最简单的垃圾收集技术。当 Python 的某
个对象的引用计数降为 0 时,说明没有任何引用指向该对象,该对象就成为要被回收的垃圾了。比如
某个新建对象,它被分配给某个引用,对象的引用计数变为 1。如果引用被删除,对象的引用计数为 0,
那么该对象就可以被垃圾回收。不过如果出现循环引用的话,引用计数机制就不再起有效的作用了
(2)标记清除
如果两个对象的引用计数都为 1,但是仅仅存在他们之间的循环引用,那么这两个对象都是需要被
回收的,也就是说,它们的引用计数虽然表现为非 0,但实际上有效的引用计数为 0。所以先将循环引
用摘掉,就会得出这两个对象的有效计数。
(3) 分代回收
从前面“标记-清除”这样的垃圾收集机制来看,这种垃圾收集机制所带来的额外操作实际上与系统
中总的内存块的数量是相关的,当需要回收的内存块越多时,垃圾检测带来的额外操作就越多,而垃圾
回收带来的额外操作就越少;反之,当需回收的内存块越少时,垃圾检测就将比垃圾回收带来更少的额
外操作。
举个例子:
当某些内存块 M 经过了 3 次垃圾收集的清洗之后还存活时,我们就将内存块 M 划到一个集合 A 中去,而新分配的内存都划分到集合 B 中去。当垃圾收集开始工作时,大多数情况都只对集合 B 进行垃圾回收,而对集合 A 进行垃圾回收要隔相当长一段时间后才进行,这就使得垃圾收集机制需要处理的内存少了,效率自然就提高了。在这个过程中,集合 B 中的某些内存块由于存活时间长而会被转移到集合 A 中,当然,集合 A 中实际上也存在一些垃圾,这些垃圾的回收会因为这种分代的机制而被延迟。
内存池
(1) Python 的内存机制呈现金字塔形状,-1,-2 层主要有操作系统进行操作
(2) 第 0 层是 C 中的 malloc,free 等内存分配和释放函数进行操作
(3)第 1 层和第 2 层是内存池,有 Python 的接口函数 PyMem_Malloc 函数实现,当对象小于
256K 时有该层直接分配内存
(4) 第 3 层是最上层,也就是我们对 Python 对象的直接操作
Python 在运行期间会大量地执行 malloc 和 free 的操作,频繁地在用户态和核心态之间进行切换,这将严重影响 Python 的执行效率。为了加速 Python 的执行效率,Python 引入了一个内存池机制,用于管理对小块内存的申请和释放。
Python 内部默认的小块内存与大块内存的分界点定在 256 个字节,当申请的内存小于 256 字节时,PyObject_Malloc 会在内存池中申请内存;当申请的内存大于 256 字节时,PyObject_Malloc 的行为将蜕化为 malloc 的行为。当然,通过修改 Python 源代码,我们可以改变这个默认值,从而改变 Python 的默认内存管理行为。
3、内存泄露是什么?如何避免?
由于疏忽或错误造成程序未能释放已经不再使用的内存的情况。
内存泄漏并非指内存在物理上的消失,而是应用程序分配某段内存后,由于设计错误,失去了对该段内存的控制,因而造成了内存的浪费。导致程序运行速度减慢甚至系统崩溃等严重后果。
del() 函数的对象间的循环引用是导致内存泄漏的主凶。
不使用一个对象时使用:del object 来删除一个对象的引用计数就可以有效防止内存泄漏问题。
通过 Python 扩展模块 gc 来查看不能回收的对象的详细信息。
可以通过 sys.getrefcount(obj) 来获取对象的引用计数,并根据返回值是否为 0 来判断是否内存
泄漏。
4、Python 函数调用的时候参数的传递方式是值传递还是引用传递?
Python 的参数传递有:位置参数、默认参数、可变参数、关键字参数。函数的传值到底是值传递还是引用传递,要分情况:
不可变参数用值传递
像整数和字符串这样的不可变对象,是通过拷贝进行传递的,因为你无论如何都不可能在原处改变不可变对象
可变参数是引用传递的
比如像列表,字典这样的对象是通过引用传递、和 C 语言里面的用指针传递数组很相似,可变对象能在函数内部改变。
5、对缺省参数的理解?
缺省参数指在调用函数的时候没有传入参数的情况下,调用默认的参数,在调用函数的同时赋值时,所传入的参数会替代默认参数。
*args 是不定长参数,他可以表示输入参数是不确定的,可以是任意多个。
**kwargs 是关键字参数,赋值的时候是以键 = 值的方式,参数是可以任意多对在定义函数的时候
不确定会有多少参数会传入时,就可以使用两个参数。
补充
*args
如果你之前学过 C 或者 C++,看到星号的第一反应可能会认为这个与指针相关,然后就开始方了,其实放宽心,Python 中是没有指针这个概念的。
在 Python 中我们使用星号收集位置参数,请看下面的例子:
>>> def fun(x,*args):
... print(x)
... res = x
... print(args)
... for i in args:
... res += i
... return res
...
>>> print(fun(1,2,3,4,5,6))
上述例子中,函数的参数有两个,但是我们在输出的时候赋给函数的参数个数不仅仅是两个,让我们来运行这个代码,得到如下的结果:
1
(2, 3, 4, 5, 6)
21
从上面我们可以看出,参数 x 得到的值是 1,参数 args 得到的是一个元组 (2,3,4,5,6) ,由此我们可以得出,如果输入的参数个数不确定,其它的参数全部通过 *args 以元组的方式由 arg 收集起来。
为了更能明显的看出 *args,我们下面用一个简单的函数来表示:
>>> def print_args(*args):
... print(args)
...
接下来我传入不同的值,通过参数 *args 得到的结果我们来看一下:
>>> print_args(1,2,3)
(1, 2, 3)
>>> print_args('abc','def','ghi')
('abc', 'def', 'ghi')
>>> print_args('abc',['a','b','c'],1,2,3)
('abc', ['a', 'b', 'c'], 1, 2, 3)
不管是什么,都可以一股脑的塞进元组里,即使只有一个值,也是用元组收集,所以还记得在元组里一个元素的时候的形式吗?元组中如果只有一个元素,该元素的后面要有一个逗号。
那么如果不给 *args 传值呢?
>>> def print_args(*args):
... print(args)
...
>>> print_args()
()
答案就是这时候 *args 收集到的是一个空的元组。
最后提醒一点的是,当使用星号的时候,不一定要把元组参数命名为 args,但这个是 Python 中的一个常见做法。
**kwargs
使用两个星号是收集关键字参数,可以将参数收集到一个字典中,参数的名字是字典的 “键”,对应的参数的值是字典的 “值”。请看下面的例子:
>>> def print_kwargs(**kwargs):
... print(kwargs)
...
>>> print_kwargs(a = 'lee',b = 'sir',c = 'man')
{'a': 'lee', 'b': 'sir', 'c': 'man'}
由例子可以看出,在函数内部,kwargs 是一个字典。
看到这的时候,可能聪明的你会想,参数不是具有不确定型吗?如何知道参数到底会用什么样的方式传值?其实这个很好办,把 *args 和 **kwargs 综合起来就好了啊,请看下面的操作:
>>> def print_all(x,y,*args,**kwargs):
... print(x)
... print(y)
... print(args)
... print(kwargs)
...
>>> print_all('lee',1234)
lee
1234
()
{}
>>> print_all('lee',1,2,3,4,5)
lee
1
(2, 3, 4, 5)
{}
>>> print_all('lee',1,2,3,4,5,like = 'python')
lee
1
(2, 3, 4, 5)
{'like': 'python'}
如此这般,我们就可以应对各种各样奇葩无聊的参数请求了。当然在这还是要说的是,这里的关键字参数命名不一定要是 kwargs,但这个是通常做法。
6、为什么函数名字可以当做参数用?
Python 中一切皆对象,函数名是函数在内存中的空间,也是一个对象。
7、Python 中 pass 语句的作用是什么?
在编写代码时只写框架思路,具体实现还未编写就可以用 pass 进行占位,使程序不报错,不会进行任何操作。
8、面向对象中super的作用?
super() 函数是用于调用父类(超类)的一个方法。
super 是用来解决多重继承问题的,直接用类名调用父类方法在使用单继承的时候没问题,但是如果使用多继承,会涉及到查找顺序(MRO)、重复调用(钻石继承)等种种问题。
MRO 就是类的方法解析顺序表, 其实也就是继承父类方法时的顺序表。
作用:
-
根据 mro 的顺序执行方法
-
主动执行 Base 类的方法
9、是否使用过functools中的函数?其作用是什么?
Python的functools模块用以为可调用对象(callable objects)定义高阶函数或操作。
简单地说,就是基于已有的函数定义新的函数。
所谓高阶函数,就是以函数作为输入参数,返回也是函数。
10、json序列化时,默认遇到中文会转换成unicode,如果想要保留中文怎么办?
import json
a = json.dumps({"ddf": "你好"}, ensure_ascii=False)
print(a)
# {"ddf": "你好"}
11、什么是断言?应用场景?
assert断言——声明其布尔值必须为真判定,发生异常则为假。
info = {}
info['name'] = 'egon'
info['age'] = 18
# 用assert取代上述代码:
assert ('name' in info) and ('age' in info)
设置一个断言目的就是要求必须实现某个条件。
12、有用过with statement吗?它的好处是什么?
with语句的作用是通过某种方式简化异常处理,它是所谓的上下文管理器的一种
用法举例如下:
with open('output.txt', 'w') as f:
f.write('Hi there!')
当你要成对执行两个相关的操作的时候,这样就很方便,以上便是经典例子,with语句会在嵌套的代码执行之后,自动关闭文件。
这种做法的还有另一个优势就是,无论嵌套的代码是以何种方式结束的,它都关闭文件。
如果在嵌套的代码中发生异常,它能够在外部exception handler catch异常前关闭文件。
如果嵌套代码有return/continue/break语句,它同样能够关闭文件。