-
总时间限制:
- 1000ms 内存限制:
- 10000kB
-
描述
-
宝昌县长意气风发,他决定整修之前县里的道路。县里的道路很多,但维护费用昂贵。具体如图A所示。线段上面的数据表示两个节点之间的所需要的维修费用,现在需要对乡村进行道路优化,最基本的要求是将所有的村庄节点都要联通起来,并且要求每月的维护费用最小。比如优化后的图如B所示。
输入
- 第一行只包含一个表示村庄个数的数n,n不大于26,并且这n个村庄是由大写字母表里的前n个字母表示。接下来的n-1行是由字母表的前n-1个字母开头。最后一个村庄表示的字母不用输入。对于每一行,以每个村庄表示的字母开头,然后后面跟着一个数字,表示有多少条道路可以从这个村到后面字母表中的村庄。如果k是大于0,表示该行后面会表示k条道路的k个数据。每条道路的数据是由表示连接到另一端村庄的字母和每月维修该道路的花费组成。维修费用是正整数的并且小于100。该行的所有数据字段分隔单一空白。该公路网将始终连接所有的村庄。该公路网将永远不会超过75条道路。没有任何一个村庄会有超过15条的道路连接到其他村庄(之前或之后的字母)。在下面的示例输入,数据是与上面的地图相一致的。 输出
- 输出是一个整数,表示每个数据集中每月维持道路系统连接到所有村庄所花费的最低成本。 样例输入
-
9 A 2 B 12 I 25 B 3 C 10 H 40 I 8 C 2 D 18 G 55 D 1 E 44 E 2 F 60 G 38 F 0 G 1 H 35 H 1 I 35
样例输出
-
216
提示
考虑看成最小生成树问题,注意输入表示。
#include<iostream>
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<assert.h>
#include<ctype.h>
#include<stdlib.h>
using namespace std;
struct node{
char C1,C2;//村庄1,村庄2.
int w;//费用。
int f;//并查集的 判断是否已经联通。
}data[100];
int cnt;
int n;
int fa[100];
bool cmp(node a,node b)
{
return a.w<b.w;
}
int find(int x)
{
if(fa[x]==x)return x;
else return fa[x] = find(fa[x]);
}
bool unin(int a,int b)
{
int fx1 = find(a);
int fx2 = find(b);
if(fx1 == fx2 )return false;
else {fa[fx2] = fx1;return true;}
}
void init()
{
for(int i=1;i<=n;++i)
fa[i] = i;
}
int main(){
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
scanf("%d",&n);
int i;
cnt = 1;
for(i = 1; i<n;i++)
{
char cun1;
int lu;
scanf("%*c%c %d",&cun1,&lu);
//printf("%c __%d\n",cun1,lu);
while(lu--)
{
data[cnt].C1 = cun1;
scanf("%*c%c %d",&data[cnt].C2,&data[cnt].w);
cnt++;
}
}
int ans =0;
sort(data,data+cnt,cmp);//排序 为下面贪心。
/*for(i=1;i<cnt;i++)
printf("%c %c %d ____\n",data[i].C1,data[i].C2,data[i].w);*/
init();//并查集初始化。
for( int t =1, i =1; i<=n-1;t++)
if (unin(data[t].C1-'A'+1,data[t].C2-'A'+1)){//若已经联通了。不需要再修路。
ans +=data[t].w;
i++;
}
printf("%d",ans);
return 0;
}