codeforces 547C 容斥原理
/*
题意:
第一行有两个数n,q表示由n个数,q次询问
第二行有n个数a1,a2.....
接下来q行表示询问,每行一个数i表示ai在集合中是否存在(集合最初是空的)如果存在把
这个去掉以后问剩下的数两两互质的数有多少个。若果不存在把这个数加入集合,问两两互
质的有多少个。
注意:如果判断这个数在集合中存在的标志是这个数是否存在且下标是否一致,如果数存在但
下标不一致也应该把这个数加入到集合里头


思路:声明一个数x如果它不存在y>1且y的平方不是x的因数它就是好数
x=p1的a1次方*p2的a2次方*.....f(x)=a1+a2+a3+...换句话说a1,a2,...他们的值不是0就是1
然后声明d(x)为一个所有的数都有一个因数为x的集合。如果前面的集合中两两互质的已经算出
来了为ans,那么在加一个数,该是多少呢。ans=ans+d(1)-d(p1)-d(p2)-...d(pn)+d(p1p2)+
d(p1p3)+...-d(p1p2p3)-d(p1p2p4)....
d(1)的值应该为前面出现数的个数
d(p1)的值应该为前面出现有因数为P1的数的个数




上面的步骤就是容斥
*/
#include<bits/stdc++.h>
using namespace std;
const int maxn = 500005;
int a[200005],mul[80],cnt[maxn],has[200005];
vector<int> p[maxn];
long long ans;
void add(int val,int sign)
{
    for(int mask=0;mask<(1<<p[val].size());mask++)
    {
        if(!mask)
            mul[mask]=1;
        else
            mul[mask]=mul[mask&(mask-1)]*p[val][__builtin_ctz(mask)];
        if(sign<0)
            cnt[mul[mask]]--;
        if(__builtin_popcount(mask)&1)
            ans-=cnt[mul[mask]]*sign;
        else
            ans+=cnt[mul[mask]]*sign;
        if(sign>0)
            cnt[mul[mask]]++;
    }
}
int main()
{
    ios::sync_with_stdio(false);
    for(int i=2;i<maxn;i++)
        if(p[i].empty())
            for(int j=i;j<maxn;j+=i)
                p[j].push_back(i);
    int n,q;
    cin >> n >> q;
    for(int i=0;i<n;i++)
    {
        cin >> a[i];
        has[i]=1;
    }
    while(q--)
    {
        int x;
        cin >> x;
        x--;
        add(a[x],has[x]);
        has[x]*=-1;
        cout << ans << "\n";
    }
    return 0;
}

阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u013491149/article/details/46806511
个人分类: 数论
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

不良信息举报

codeforces 547C 容斥原理

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭