hdu1829(种类并查集)

题意:给你n个虫,输入m行a,b,表示a和b是异性,要你判断是否有同性恋;

这是一道种类并查集题,对于一个并查集新手的我还是觉得有点难度的。

种类并查集的关键:当前节点到他的根节点的距离

在这道题中,如果到根节点的距离是奇数说明是异性,偶数说明是同性,即同性恋,

利用rank数组记录到根节点的距离,比如rand[x] 表示x 到 f[x] 的  距离&1

下面是代码:

#include<iostream>
#include<algorithm>
#include<string>
#include<stack>
#include<queue>
#include<set>
#include<map>
#include<stdio.h>
#include<stdlib.h>
#include<ctype.h>
#include<time.h>
#include<math.h>

#define N 2005
#define eps 1e-9
#define pi acos(-1.0)
#define P system("pause")
using namespace std;
int f[N],rank[N];
int flag;
/*int find(int x)
{
    if(x == f[x]) return x;
   // int t = f[x];
    rank[x] = (rank[x] + rank[f[x]])&1;
    return f[x] = find(f[x]);     
}*/
int find(int x)
{
    if(x == f[x]) return x;
    int t = find(f[x]);
    rank[x] = (rank[x] + rank[f[x]])&1;
    return f[x] = t;;
         
}

void Union(int a,int b)
{
             int x,y;
             x = find(a);
             y = find(b);
             if(x == y)
             {
                  if(rank[a] == rank[b])
                    flag = 1;    
             }     
             else
             {
                  f[x] = y;
                  rank[x] = (rank[a] + rank[b] + 1)&1;    
             }      
}
int main()
{
//freopen("input.txt","r",stdin);
//freopen("output.txt","w",stdout);
    int t,z = 1;
    scanf("%d",&t);
    while(t--)
    {
        int n,m;
        scanf("%d%d",&n,&m);
        int i;
              
        flag = 0; 
        for(i = 0; i <= n ;i++)
        {
              f[i] = i;
              rank[i] = 0;
        }
        int a,b;
        for(i = 0; i < m; i++)
        {
             scanf("%d%d",&a,&b);
             if(flag) continue;
             Union(a,b);   
        }
        printf("Scenario #%d:\n",z++);
        if(flag) printf("Suspicious bugs found!\n");
        else printf("No suspicious bugs found!\n");
        printf("\n");                         
    }
  //  P;                               
    return 0;    
}


### HDU 3342 并查集 解题思路与实现 #### 题目背景介绍 HDU 3342 是一道涉及并查集的数据结构题目。该类问题通常用于处理动态连通性查询,即判断若干元素是否属于同一集合,并支持高效的合并操作。 #### 数据描述 给定一系列的人际关系网络中的朋友关系对 (A, B),表示 A 和 B 是直接的朋友。目标是通过这些已知的关系推断出所有人之间的间接友谊连接情况。具体来说,如果存在一条路径使得两个人可以通过中间人的链条相连,则认为他们是间接朋友。 #### 思路分析 为了高效解决此类问题,可以采用带按秩压缩启发式的加权快速联合-查找算法(Weighted Quick Union with Path Compression)。这种方法不仅能够有效地管理大规模数据集下的分组信息,而且可以在几乎常数时间内完成每次查找和联合操作[^1]。 当遇到一个新的友链 `(a,b)` 时: - 如果 a 和 b 已经在同一棵树下,则无需任何动作; - 否则,执行一次 `union` 操作来把它们所在的两棵不同的树合并成一棵更大的树; 最终目的是统计有多少个独立的“朋友圈”,也就是森林里的树木数量减一即是所需新建桥梁的数量[^4]。 #### 实现细节 以下是 Python 版本的具体实现方式: ```python class DisjointSet: def __init__(self, n): self.parent = list(range(n)) self.rank = [0] * n def find(self, p): if self.parent[p] != p: self.parent[p] = self.find(self.parent[p]) # 路径压缩 return self.parent[p] def union(self, p, q): rootP = self.find(p) rootQ = self.find(q) if rootP == rootQ: return # 按秩合并 if self.rank[rootP] > self.rank[rootQ]: self.parent[rootQ] = rootP elif self.rank[rootP] < self.rank[rootQ]: self.parent[rootP] = rootQ else: self.parent[rootQ] = rootP self.rank[rootP] += 1 def solve(): N, M = map(int, input().split()) dsu = DisjointSet(N+1) # 初始化不相交集 for _ in range(M): u, v = map(int, input().split()) dsu.union(u,v) groups = set() for i in range(1,N+1): groups.add(dsu.find(i)) bridges_needed = len(groups)-1 print(f"Bridges needed to connect all components: {bridges_needed}") solve() ``` 这段代码定义了一个名为 `DisjointSet` 的类来进行并查集的操作,包括初始化、寻找根节点以及联合两个子集的功能。最后,在主函数 `solve()` 中读取输入参数并对每一对好友调用 `dsu.union()` 方法直到遍历完所有的边为止。之后计算不同组件的数量从而得出所需的桥接次数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值