本人第一道ac的状态压缩dp,这题的数据非常水,很容易过
题意:在n*n的矩阵中选数字使得不存在任意两个数字相邻,求最大值
解题思路:
一、因为在1<<20中有很多状态是无效的,所以第一步是选择有效状态,存到cnt[]数组中
二、dp[i][j]表示到第i行的状态cnt[j]所能得到的最大值,状态转移方程dp[i][j] = max(dp[i][j],dp[i-1][k]) ,其中k满足cnt[k] & cnt[j] == 0,之后dp[i][j]+=sum
举个例子说明sum 的意思,比如第一行75 15 21,cnt[j] = 5,即(101),那么sum = 96
代码如下:
#include<iostream>
#include<algorithm>
#include<cstring>
#include<stack>
#include<queue>
#include<set>
#include<map>
#include<stdio.h>
#include<stdlib.h>
#include<ctype.h>
#include<time.h>
#include<math.h>
#define N 25
#define inf 0x7fffffff
#define eps 1e-9
#define pi acos(-1.0)
#define P system("pause")
using namespace std;
int a[N][N],cnt[20000],dp[25][20000];
int n,tot;
void init() //求有效状态
{
tot=0;
for (int i=0; i<(1<<n); i++)
{
if ((i<<1)&i)continue;
cnt[tot++]=i;
}
//for(int i = 0; i < 100; i++)
// cout<<cnt[i]<<" ";
}
int main()
{
//freopen("input.txt","r",stdin);
//freopen("output.txt","w",stdout);
while(scanf("%d",&n) != EOF)
{
init();
int i,j,k;
int res = 0;
for(i = 0; i < n; i++)
for(j = 0; j < n; j++)
scanf("%d",&a[i][j]);
memset(dp,0,sizeof(dp));
for(i = 0; i < tot; i++)//初始化第一行
{
for(j = 0; j < n; j++)
if((cnt[i]&(1<<j)) > 0)
dp[0][i] += a[0][j];
if(dp[0][i] > res)
res = dp[0][i];
}
for(i = 1; i < n; i++)
for(j = 0; j < tot; j++)//cnt[]记录的是有效状态
{
for(k = 0; k < tot; k++)
if((cnt[j]&cnt[k]) == 0)
dp[i][j] = max(dp[i][j],dp[i-1][k]);
for(k = 0; k < n; k++)
if(((1<<k)&cnt[j]) > 0)
dp[i][j] += a[i][k];
if(res < dp[i][j]) res = dp[i][j];
}
printf("%d\n",res);
}
// P;
return 0;
}