URAL1091 Tmutarakan Exams

关键词:求前s个数中k个gcd为1的数的组数
题意:求k个数a1,a2…ak,使得gcd(a1,a2…ak)>1的数的组数,其中1=< ai<=s。
解法:容斥原理。
法一:
1.设gcd(a1,a2…ak)=d,按d的整除性划分。 Ap :当d能被素数p整除时,(a1,a2…ak)的组数。ans= |Ap1Ap2...Apm|
2. |Ap1Ap2..Apn| = Cks/(p1p2...pn) ,记为B(s,k,p1*p2*…*pn)
所以可以用容斥原理求解。
同时,也可以用mobius函数的形式简化容斥原理形式
ans= si=1mu[i]B(s,k,i)
复杂度:O(s),即O(n)

拓展:
1.求a[1,2…n]中k个gcd>1的数的个数
思路与上述解法相同,只是在计算分量时,稍加变化
|Ap1Ap2..Apn| = Ckbeinum[p1p2...pn]
beinum[i]:a[1,2…n]中是i的倍数的个数。通过O(n* max(a[i]) )预处理可以得到

#include<stdio.h>
#include<iostream>
#include<algorithm>
#include<string.h>
#include<vector>
#define lowbit(x) x&(-x)
#define mem(a,b) memset(a,b,sizeof(a))
#define ll long long
using namespace std;
#define rad 10000

const ll maxn =50+10;

ll k,s,ans;
ll c[maxn][maxn],mu[maxn];
bool not_prime[maxn];
vector<ll> prime;

ll C(ll n,ll m){
    if(n<m) return c[n][m]=0;
    if(c[n][m]) return c[n][m];
    if((m==0)||(m==n)||(n==1)) return c[n][m]=1;
    return c[n][m]=C(n-1,m-1)+C(n-1,m);
}

void mobius(){
    mu[1]=1;
    for(ll i=2;i<maxn;i++){
        if(!not_prime[i]) prime.push_back(i),mu[i]=-1;
        for(ll j=0;j<prime.size(),i*prime[j]<maxn;j++){
            not_prime[i*prime[j]]=1;
            if(!(i%prime[j])) { mu[i*prime[j]]=0;break; }
            else { mu[i*prime[j]]=-mu[i]; }
        }
    }
}

int main(){
    memset(c,0,sizeof(c));
    mobius();
    //freopen("a.txt","r",stdin);
    while(scanf("%lld%lld",&k,&s)!=EOF){
        ans=0;
        for(int i=2;i<=s;i++){
            ans-=mu[i]*C(s/i,k);
        }
        if(ans>10000) printf("10000\n");
        else printf("%lld\n",ans);
    }
    return 0;
}

法二:
法一的缺陷在于只能求gcd为1的集合个数,法二则能求gcd为i的集合个数!
f[i]:表示n个数中选取k个数gcd为i的集合个数
f[i]=C(beinum[i],k)- jif[j]
复杂度:O(n*sqrt(n))

#include <iostream>
#include <cstdio>
#include <set>
#include<string.h>
#include <cstdlib>
using namespace std;
typedef long long ll;

# define N 100010

ll k,s,cnt[100],f[100],ans;
ll c[100][100];

ll C(ll a,ll b){
    if(a<b) return c[a][b]=0;
    if(c[a][b]) return c[a][b];
    if(a==b||b==0||a==1) return c[a][b]=1;
    return c[a][b]=C(a-1,b)+C(a-1,b-1);
}

int main(){
    scanf("%lld%lld",&k,&s);
    memset(cnt,0,sizeof(cnt));
    memset(c,0,sizeof(c));
    ans=0;
    for(ll i=1;i<=s;i++) cnt[i]=s/i;
    for(ll i=1;i<=s;i++) f[i]=C(cnt[i],k);
    for(ll i=s;i>=1;i--){
        for(ll j=1;j*j<=i;j++){
            if(i%j==0){
                if(j!=i) f[j]-=f[i];
                if(i!=j*j&&(i/j)!=i) f[i/j]-=f[i];
            }
        }
    }
    for(ll i=2;i<=s;i++)  ans+=f[i];
    if(ans<=10000) printf("%lld\n",ans);
    else printf("10000\n");
    return 0;
}

拓展2:求n个数a[1],a[2]…a[n]中gcd为k的集合个数
f[i]= (2beinum[i]1) - jif[j]
复杂度:O(n*sqrt(n))

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值