生成函数小结

1.常见模型
指数型生成函数
排列型分配问题问题:求k个不同元素的有条件n排列数
解法:求出相应的指数型生成函数,找 xn 系数
拓展问题1:n个不同的小球放入k个不同的盒子中的方法数
解法:可以转化为k个不同的盒子去覆盖n个小球,即k个无穷元素的无条件n排列数: kn

通型生成函数模型
组合型分配问题:n个相同元素放入k个不同盒子的方法数
C(n+k-1,k)

类似问题:n个不同元素放入k个相同盒子的方法数。如果每个盒子非空,则为S(n,k)——第二类斯特灵数,如果可能空,那么为 ki=1S(n,i)
但是注意:结果不等于 kn/k! (只有在盒子非空时才可以除以k!得到,因为两个空的不同盒子是等价的。所以这个结果是错误的)

2.常用生成函数公式:
C(-n,k)= (1)kC(n+k1,k) ,n>0
1. ex=i=01/i!xi
2. enx=i=0ni/i!xi
3. (ex+ex)/2=i=01/(2i)!x2i
4. (exex)/2=i=01/(2i+1)x2i+1
5. n=0xn=11x
6. n=0(ax)n=11ax
7. n=0(n+1)xn=1(1x)2
8. n=0(n+22)xn=1(1x)3.
9. n=0an(n+kk)xn=1(1ax)k+1
10. n=0f(n)xn=G(x) f(n)是n的多项式函数,一定存在G(x)与之对应,可以用待定系数法求出

3.常见性质:
fn 对应生成函数为 F[x] ,那么:
1. gn=fnk ,则G[x]= xkF[x] , n>=k ,生成函数从 xk 开始出现非零项
2. g(n)=nk=0f(k)f(nk) 对应生成函数G[x]为 F2[x]
3.g(n,m)= ni=0g(i,m1)f(ni) , G[x]=Fm[x]

4.应用
1)已知递推式,求通项。把递推市看作第n项的等式关系,推出生成函数等式,解得生成函数,求出n次项前系数即为通项
2)已知组合意义。如排列型分配问题问题

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值