拆分为连续正整数之和

试把一个正整数n拆分为若干个(不少于2个)连续正整数之和。例如n=15,有三种拆分:15=1+2+3+4+5,15=4+5+6,15=7+8.

对于给定的正整数n求出所有符合这种拆分要求的连续正整数序列的个数。


(1)基本求和算法

算法要点:定义变量s实施连续求和,设计i(1~(n-1)/2)循环为连续求和的起始项,j(i~(n+1)/2)为连续求和的累加项。

在j循环中每加一项j后检测是否出现s>=n,所求的连续正整数之后s已达到或超过n,即退出求和j循环。但在退出循环之前有必要进一步检测s=n是否成立,若有s=n成立即找到一个解,应用变量c统计解的个数并输出。

算法代码:

#include <stdio.h>

void main()
{
	long c,i,j,n,s;
	printf("请输入要拆分的数字:");
	scanf("%d",&n);
	c=0;
	for(i=1;i<=(n-1)/2;i++)
	{
		s=0;
		for(j=i;j<=(n+1)/2;j++)
		{
			s=s+j;
			if(s>=n)
			{
				if(s==n)
				{
					c++;
					printf("%d: %d+...+%d\n",c,i,j);
				}
				break;
			}
		}
	}
	printf("共有以上%d个解\n",c);
}


(2)应用求和公式优化设计

应用连续正整数之和的公式可简化拆分设计。

算法要点:

设满足题意的连续正整数的个数为k,k的最大值为t,由求和公式1+2+。。。+t=t(t+1)/2=n

显然有t<sqrt(2n),(sqrt为非负数的平方根).

设起始数为m的连续k项(2<=k<t)之和为给定整数n,由求和公式有

m+(m+1)+...+(m+k-1)=k(2m+k-1)/2=n

由上式解出m得

m=(2n/k-k+1)/2

建立关于连续正整数个数的k(2~t)循环,在循环中检验:如果2n不能被k整除,或者2n/k-k+1不能被2整除,显然此时m非正整数。则返回;否则得正整数m=(2n/k-k+1)/2即为所求拆分的一个解:m+(m+1)+...+(m+k-1).

算法描述如下:

#include  <stdio.h>
#include  <math.h>

void main()
{
	long c,k,n,m,t;
	printf("请输入所要拆分的数字:");
	scanf("%d",&n);
	t=(long)sqrt(2*n);
	c=0;
	for(k=2;k<=t;k++)
	{
		if((2*n)%k>0||(2*n/k+1-k)%2>0)
			continue;
		m=(2*n/k+1-k)/2;
		c++;
		printf("%d: %d+...+%d\n",c,m,m+k-1);
	}
	printf("共有以上%d个解\n",c);
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值