试把一个正整数n拆分为若干个(不少于2个)连续正整数之和。例如n=15,有三种拆分:15=1+2+3+4+5,15=4+5+6,15=7+8.
对于给定的正整数n求出所有符合这种拆分要求的连续正整数序列的个数。
(1)基本求和算法
算法要点:定义变量s实施连续求和,设计i(1~(n-1)/2)循环为连续求和的起始项,j(i~(n+1)/2)为连续求和的累加项。
在j循环中每加一项j后检测是否出现s>=n,所求的连续正整数之后s已达到或超过n,即退出求和j循环。但在退出循环之前有必要进一步检测s=n是否成立,若有s=n成立即找到一个解,应用变量c统计解的个数并输出。
算法代码:
#include <stdio.h>
void main()
{
long c,i,j,n,s;
printf("请输入要拆分的数字:");
scanf("%d",&n);
c=0;
for(i=1;i<=(n-1)/2;i++)
{
s=0;
for(j=i;j<=(n+1)/2;j++)
{
s=s+j;
if(s>=n)
{
if(s==n)
{
c++;
printf("%d: %d+...+%d\n",c,i,j);
}
break;
}
}
}
printf("共有以上%d个解\n",c);
}
应用连续正整数之和的公式可简化拆分设计。
算法要点:
设满足题意的连续正整数的个数为k,k的最大值为t,由求和公式1+2+。。。+t=t(t+1)/2=n
显然有t<sqrt(2n),(sqrt为非负数的平方根).
设起始数为m的连续k项(2<=k<t)之和为给定整数n,由求和公式有
m+(m+1)+...+(m+k-1)=k(2m+k-1)/2=n
由上式解出m得
m=(2n/k-k+1)/2
建立关于连续正整数个数的k(2~t)循环,在循环中检验:如果2n不能被k整除,或者2n/k-k+1不能被2整除,显然此时m非正整数。则返回;否则得正整数m=(2n/k-k+1)/2即为所求拆分的一个解:m+(m+1)+...+(m+k-1).
算法描述如下:
#include <stdio.h>
#include <math.h>
void main()
{
long c,k,n,m,t;
printf("请输入所要拆分的数字:");
scanf("%d",&n);
t=(long)sqrt(2*n);
c=0;
for(k=2;k<=t;k++)
{
if((2*n)%k>0||(2*n/k+1-k)%2>0)
continue;
m=(2*n/k+1-k)/2;
c++;
printf("%d: %d+...+%d\n",c,m,m+k-1);
}
printf("共有以上%d个解\n",c);
}