借助生成式人工智能促进自主成长:迈向新的学习分析框架

毛千润

摘要

在日益由去中心化知识生态系统和普及的人工智能技术塑造的时代,培养可持续的学习者主体性已成为一项关键的教育任务。本文介绍了一种新颖的概念框架,将生成式人工智能(GAI)与学习分析(LA)相结合,以培养自主成长——一种动态能力,使学习者能够在不同情境中不断推动自己的发展路径。基于当前自主学习(SDL)和人工智能介导的教育研究中的关键空白,所提出的“学习者潜能激发”(A2PL)模型重新概念化了学习者抱负、复杂思维和总结性自我评估在GAI支持环境中的相互作用。讨论了未来干预设计和数据分析的方法论意义,并将自主成长定位为数字时代设计公平、适应性和可持续学习系统的关键轴心。

1. 引言

教育领域面临着两个日益突出的挑战,这些挑战威胁着学习和发展格局的重塑。首先,传统的教师主导、机构中心化的环境正被一个去中心化、不断发展且技术先进的在线景观所取代。在这种新范式下,知识和技能并非由单一的解说者提供,而是通过分享和共同创造不断更新、再生产和重复,这使得现有的教育模式显得不足。
学生过度依赖EdTech工具以及信息搜索和综合工具(如生成式人工智能GAI)在当代教育景观中构成了重大挑战,同时缺乏对这些工具是否真正促进学习者主体性发展的研究也令人担忧。

将人工智能整合到教育实践中为提高学习成果和促进公平提供了转型机会。根据联合国教科文组织(UNESCO),人工智能有潜力通过改善所有学习者获得优质教育的机会来加速实现可持续发展目标4(SDG 4),无论他们的社会经济背景如何(UNESCO, 2019; UNESCO, 2021)。

正如一些人指出的那样,人工智能促进了信息和在线教育的获取,有助于弥合弱势群体面临的资讯、技能和教育差距,这些群体由于时间限制、经济困难、地理距离或身体挑战而无法获得传统学习机会(Thakkar等人,2020;Sanabria-Z等人,2023)。ChatGPT通过提供有价值的信息和资源提高了学生生产力并支持学术成就(Fauzi等人,2023)。

随着无所不知的数字基础设施和人工智能支持的实施,似乎所有学生都有可能获得高质量、适应性的学习体验,并显著推进教育公平。然而,必须认识到,访问障碍并不是造成教育差距的唯一因素。在当今的信息时代,导航数字景观的学生往往发现自己淹没在信息洪流中。尽管许多国家和地区的知识获取有所改善,但教育同质化和标准化的普遍问题仍然存在,严重影响了教育公平。这种方法限制了学生构想和追求与其独特经验和审美偏好相一致的多样化路径的能力,从而阻碍了平等的教育机会(Appadurai, 2004;Zipin等人,2013;Gale, 2014)。

阿帕杜拉伊(Appadurai, 2004)提出了“渴望能力”的概念,他认为弱势群体往往更难叙述“具体商品和结果,通常是物质和接近的”与“将商品和服务束实际联系到更广泛的社会场景和上下文,以及更抽象的规范和信念”的途径之间的关系;以及“导航渴望所在的文化地图并培养对特定愿望或目标与更具包容性的场景、上下文和规范之间联系的明确理解”的能力是强大“渴望能力”的本质。

同样,鲍曼(Bauman, 2009)在他的“液态现代性”描述中指出,释放和扩展隐藏在个性中的“内在力量”,等待被唤醒和付诸行动的过程,体现了个体通过教育寻求的那种知识——更准确地说是灵感。事实上,对于公平教育而言,重要的是“渴望能力”,即理解和认识越来越明确的发展路径,其中愿景和抱负指导和维持追求学习者设想未来的具体实践,伴随着他们所做的选择以及他们发展出的知识、技能和策略。

这一观点进一步得到了皮尔森全球学习者调查(Pearson Global Learner Survey, 2019)的支持,该调查涵盖了来自19个国家的超过11,000名参与者。调查结果揭示了终身、自主学习的紧迫需求,以应对学术和职业发展的需求,特别是在教育和职业阶段之间的过渡时期。

正如联合国教科文组织(UNESCO, 2019)所强调的,人工智能在教育中的应用面临重大挑战,需要增加人力资本培训以识别和实施GAI最有效的教育用途。在这个新兴领域,优先考虑教育公平的潜力至关重要,不仅通过标准化,而且通过建立自我导向能力,作为引导个人实现其多样化个人目标的指南针,在持续、可持续的学习和发展过程中由自身主动性驱动。

本研究旨在通过使学习者能够构思清晰的发展路径,使愿景和抱负成为具体自我导向学习实践的指导原则和基础,从而加强教育公平。它还通过将自主学习的基础支柱整合到一个新的概念框架中来解决一个关键的研究空白。该框架结合学习分析,通过持续和迭代的学习和成长周期来培养学习者主体性,支持跨多种任务和情境的自主学习能力的发展。

2. 文献综述

将生成式人工智能与自主学习整合的挑战:批判性回顾

为了赋予个人构建个性化和战略性路径的能力,这种路径作为规划和持续自主学习的指南罗盘,教育系统需要一种新的结构性方法,这种方法偏离传统的僵化教师中心模型——一种鼓励个性化学习方法的方法,在指导学习过程中专注于加强学习者主体性。学习者主体性指的是学习者主动承担和拥有自己教育旅程的能力,做出影响学习体验和结果的选择和决策(Bandura, 2006)。这里的一个基础以学生为中心的方法是自主学习。

自主学习(SDL)最初由各种研究人员提出(Knowles 1970, 1975;Rogers 1969;Tough 1971),旨在创建以学习者为中心的学习体验,将学习者置于积极管理其教育旅程的位置,包括识别学习需求、设定目标、选择资源、实施策略和评估结果,这本质上促进了学习者主体性。

最近的文献强调了GAI增强SDL的潜力。例如,研究人员探讨了AI驱动系统如何通过提供自适应学习资源、启用个性化反馈和促进基于个人目标和进展的技能获取来支持SDL(Zawacki-Richter等人,2019;Chassignol等人,2018)。GAI还表现出作为个性化教育推动者的巨大潜力,提供持续反馈并与劳动力市场需求保持一致,在知识型经济中保持竞争力(Troka, 2022;Chen & Liu, 2018;Pérez-Ortiz等人,2020;Ally & Perris, 2022;Tang & Deng, 2022;Sanabria-Z等人,2023)。

然而,存在两个问题。首先,如何设计一个创新的SDL框架,以解决培养螺旋结构的持续向上学习进步的更广泛发展目标——一种跨越不同情境和任务的转变,更重要的是,向以人为中心的重点演变,即渴望能力?

其次,鉴于GAI的分析能力和个性化反馈的适应性,可以采用什么适应措施来利用GAI进行有效学习分析的收集,以通过结构化实时反馈促进引导发现,从而支持学习者的SDL过程,而不仅仅是适应学习者的需求和强化过度依赖?

这一领域的新兴研究重点集中在GAI在个性化学习中的优缺点,虽然不一定促进SDL(Kasneci等人,2023;Zou等人,2023)。大量研究探讨了没有干预下的自我导向语言学习(Lashari & Umrani, 2023),而关于ChatGPT的关注焦点在于其对隐私侵犯的影响(Dempere等人,2023)、学生的学术诚信(Cotton等人,2023;Rudolph等人,2023)和用户对GAI的过度依赖(Gao等人,2022;Kasneci等人,2023)。Roe和Perkins(2024)确定了2020年至2024年间发表的24篇文章,深入探讨了GAI和SDL的交叉点。尽管大量研究评估了学习者的SDL能力(Wu等人,2024;Indriani等人,2024;Han等人,2022等),但大多数研究并未优先考虑SDL技能的结构性和指导性培养以供学习者使用。

Shalong等人(2024)和Wang等人(2024)的研究与当前研究重点最为接近。Wang等人(2024)主要采用教师主导、GAI辅助的学习方法,展示GAI在促进SDL能力方面的有效性。然而,这项研究在其研究设计中未能充分区分SDL和自我调节学习(SRL),而是强调诸如自我效能感、与任务相关的学习动机(而非渴望能力)和技术接受度等SRL指标,以代表学习者在SDL中的成长。

相比之下,Shalong等人(2024)开发了LearnGuide,这是一种定制版本的ChatGPT,旨在增强SDL技能。LearnGuide提供实时、个性化的反馈,涵盖SDL策略和解决方案,包括自我评估、目标设定、主动学习和对用户生成提示的评估。这可能会导致对LearnGuide的过度依赖。

此外,这两项研究主要依靠任务后问卷数据来确定参与者是否在研究人员预设的任务中获得了特定的SDL能力,如计划能力。在缺乏学习分析支持的情况下,这种方法假设学生已经内化了这些能力。因此,参与者的回答可能仅仅反映了从GAI(如LearnGuide)中学到的程序相关术语的表面参与或熟悉度。这大大限制了这些研究在评估SDL技能在个人层面的持续性和可转移性方面的客观性和充分性。这种方法无法有效捕捉促进在不同任务和情境间无缝过渡所需的发育过程。

考虑到自我调节技能经常在SRL研究领域内评估,鉴于这一领域中越来越多的AI相关研究,值得探索这些领域是否能为我们理解和评估SDL提供有价值的见解。

将AI(包括GAI)与SRL整合的新兴研究也主要集中在结构化课堂设置和预先设计的课程上,类似地,它们主要使用基于问卷的数据收集来评估自我调节技能(Chang、Lin、Hajian和Wang,2023;Jin等人,2023;Hsu、Chang和Jen,2023;Chiu,2024;Ng、Tan和Leung,2024)。

其中一些研究注意到在指定任务中应用指导性SDL的重要性,但仍有其他严重问题存在。Ng、Tan和Leung(2024)比较了使用SRLbot(一种增强版ChatGPT机器人)和使用基于规则的Nemobot的学生。SRLbot为基于知识的科学学习和自我调节学习(SRL)策略提供了实时、适应性、个性化的解决方案。
尽管从任务后调查数据和后台系统数据来看,SRLbot确实增强了学生的SRL,因为它有效地提高了任务动机并减少了焦虑,但该研究引发了对其使用的关注,即它可能会忽视学习者主体性并模糊GAI与学习者之间决策、动机和自我调节的复杂互动(Turner & Patrick, 2008)。正如实验组中的几位学习者所表现出的过度依赖现象,例如其中一位表示:“SRLbot帮助我设定明确的目标,制定计划和常规,并整理我的学习材料。”

类似于Shalong等人(2024),这一问题的产生是因为此研究设计将任务特定结果和与任务相关的自我效能感视为SRL改进的指标或表现形式,而这些本质上是由GAI促成的。与上述SDL研究类似,单个任务中的学习行为仅作为参与的演示。只有由个人有意应用策略驱动的持续和有目的的学习行为参与,才能被视为能力发展的指标,贡献于SDL的核心向上增长轨迹。

因此,正如先前研究反复强调的问题核心在于,我们不能依赖任务级别的“学习者主体性”参与来评估学习者主体性,因为这样做存在循环推理的风险,简化了其复杂性,并忽视了在使用GAI时的关键维度,如情境、策略和反馈整合。仍需一种适应的SDL框架,将开放的教学设计与强大的学习分析设计相结合。

利用学习分析聚焦GAI中的总结性自我评估的技术可能性

为了有效促进自主成长,定义为学习者在各种情境和任务中驱动持续和可持续自主学习(SDL)周期的能力,GAI需要有意收集反映学习进度的学习数据痕迹并提供有针对性的反馈。

学习分析(LA)是指收集、测量和分析学习者及其情境的数据的实践,以理解和优化学习过程和环境(Siemens & Baker, 2012)。它利用数据分析技术来深入了解学生如何学习、识别挑战并改善教育成果(Ferguson, 2012; Papamitsiou & Economides, 2014)。通过分析教育数据,教育者可以个性化学习体验并增强教育干预(Long & Siemens, 2011; Clow, 2013)

尽管GAI具有显著潜力,但在探索GAI与LA整合可能性的实际研究仍然稀缺。然而,Chui(2023)断言GAI技术评估学生(用户)的表现仅基于概念框架在仔细审查下也缺乏有效性。实际上,GAI系统,如ChatGPT,旨在响应用户查询进行形成性评估任务。这些系统基于深度学习架构,依赖于预测序列中下一个标记的Transformer风格模型,并通过人类反馈进行强化学习微调(Ouyang等人,2022;OpenAI等人,2024)。GAI处理多模态输入(如文本和图像)并生成“更符合用户意图”的文本输出本质上是其自身的适应性学习过程。此功能固有地鼓励对系统的过度依赖(Passi & Vorvoreanu, 2022; Zhai等人,2024),而不是促进收集对SDL发展至关重要的有意义的学习者中心数据或指导总结性自我评估。如果不解决这个问题,风险在于延续现有研究讨论中提到的重大研究空白。

尽管直接结合ChatGPT和学习分析的研究很少,但本节回顾了集体提供基础依据并根据研究设计结构映射的研究。

根据Yan等人(2024)的说法,生成式人工智能(GAI)可以通过整合四个相互关联的组件:学习者、数据、分析和干预,在学习分析循环中进行情境化(见图1)。在本研究中,学习者组件包括学生及其与AI代理的互动,而提取的数据包括跨学习周期的总结性自我评估框架。通过采用诊断和交互分析,本研究连接了学习分析的两个关键阶段:洞察生成和反馈传递。
img-0.jpeg

图1. 在Clow的学习分析循环中生成式人工智能的情境化。改编自Yan等人(2024)

诊断分析作为基础,通过识别学习者随时间推移反思和调整自我评估框架的模式和趋势。在此基础上,交互分析通过生成针对学习者提交评估的引导问题,促进动态参与。这些互动鼓励迭代改进和更深层次的反思,同时谨慎地保持非指令性方法,避免揭示GAI的评估或提供直接解决方案。

在诊断方法中,总结性自我评估本质上是一项复杂的思维任务。Sanabria-Z等人(2023)设计了一个基于AI的平台,通过以共享经济为中心的创意马拉松任务评估学生的复杂思维。该框架采用决策树算法和关系数据库系统收集和分析用户活动数据,评估复杂思维特征。决策树验证响应并根据定义复杂思维掌握水平的标准分类元素。系统将数据分割成同质子区域,以确保精确分类,并将结果存储在关系数据库中以供进一步分析。通过结合自动化评估与强大的标准,该框架提供了如何在GAI中评估学生的总结性自我评估的见解。

至于交互分析,关键是提供实时反馈,使其有意义但不具指令性。而不是提供直接答案或评估结果,GAI可以提出引导问题,促使更深的反思,并鼓励学习者独立构建总结性自我评估框架。在这项研究中,GAI充当促进者、评估者,但本质上是合作者,GAI与学生之间的互动可以概念化为在一个引导发现过程中协作构建知识的过程。Scardamalia和Bereiter(2006)在知识构建方面的工作强调了通过协作脚手架迭代完善想法,这在陈等人(2019)的协作知识改进螺旋模型中得到了呼应。这项研究探讨了学习分析的结构化方法,通常实施分阶段的任务特定数据提取以监控和支持学习进展,并在小组设置中使用基于阶段的数据跟踪和反馈循环来促进协作知识细化(陈等人,2019)。本研究提供了有关构建学习分析的见解,这些分析通过阶段发展和强化教学目标,其中促进协作学习过程。

几项研究考察了ChatGPT作为助手的角色适应情况,特别强调改进其生成文本输出的方式以促进积极参与。其中,Ali等人(2023)介绍了TeacherGAIA框架,该框架不是提供直接答案,而是提供个性化指导,以促进K-12学习环境中的更深层次参与。尽管它不评估学习者的SDL能力,但这项工作突显了像GPT-4这样的生成式AI模型的潜力,通过动态提示,它可以快速执行各种任务而无需额外微调。在情境学习的新兴特性展示了提示工程的多样性,暗示了创造互动、个性化学习体验的变革潜力。

3. 概念框架:学习者潜能激发(A2PL)

本文引入了自主成长的概念:这是一种能力,反映了通过增强的渴望能力推动持续、迭代和可持续SDL过程的进展,这种渴望能力支撑着自我发展和自我实现。自主成长强调学习者的主体性,将学习者定位为发起者、执行者、评估者和对自己SDL旅程负责的主要代理人,本身和自身是一个动态和发展的过程。简而言之,自主成长不仅仅是通过结构化课程或情境中预设任务实现预定学习成果的SDL过程;相反,它代表了独立和持续构建和评估自己SDL过程的更广泛能力,由内部指南引导。自主成长可以被认为是对更广泛的SDL框架的高级和全面
延伸,代表了其最发达和综合的结构。
img-1.jpeg

图2. 自主学习(SDL)的基本位置,改编自Morris(2019)

本文重新配置了Morris(2019)总结的自主学习(SDL)三大基本支柱,以构建自主成长的框架。渴望能力代表了人文哲学的核心本质;复杂思维是建构主义认识论的基础;而自我评估则体现了实用主义哲学的原则。在这个框架的中心是自主成长,与其他三个支柱一起,代表了一个个体化、有目的和发展的学习过程(见图3)。以下部分将详细讨论这三个基础。
img-2.jpeg

图3. 自主成长的框架

人文视角:渴望能力

人文视角将学习目标视为个人发展的路径,强调成长作为一个持续的发展过程,本质上朝着自我实现和无限增长潜力发展,受每个学习者自我概念和对世界的个人理解塑造(Groen & Kawalilak, 2014;Elias & Merriam, 1995;
Leach, 2018)。这与渴望能力一致,渴望能力是“导航包含抱负的文化地图并培养对特定愿望或目标与更具包容性的场景、上下文和规范之间联系的明确理解”的能力。(Appadurai, 2004)在本研究的背景下,渴望能力由两个相互关联的层次组成。第一层涉及识别抱负和对社会成就和专业成长的长期愿景。第二层涵盖对资源、技能和策略差距的反思心态,旨在促进当前状态与预期未来之间的对齐,其中发展过程积极参与并完全实现。

建构主义认识论:复杂思维

建构主义认识论强调主动知识建构,知识是主观的、个人的,并通过与他人和真实世界情况的互动发展(Cobb & Bowers, 1999; Simpson, 2002; Schunk, 2020; Jonassen, 1999)。其目的是培养学习者以反思的心态应对复杂问题(Brookfield, 1985)。在这一框架内,复杂思维特别适合于主动知识建构,因为它涉及发展高级分析和适应性推理能力,使学习者能够应对多方面的现实世界挑战(Schunk, 2020)。

此外,研究表明元认知与批判性思维之间存在既定的相关性(Barzegarbafrouee, Farzin, & Zare, 2019; Amin, Corebima, Zubaidah, & Mahanal, 2020; Arslan, 2018; Correa, Ossa, & Sanhueza, 2019; Lukitasari, Hasan, & Murtafiah, 2019),这是复杂思维的一个组成部分(Ramírez-Montoya et al., 2022)。Silva(2020)还强调了复杂思维任务与培养学习者能力的一致性,“…批判性或自我批判地检查他们自己的程序和方法,从而自我调节他们的思维过程(元认知)”。因此,复杂思维任务不仅作为培养适用于现实世界情景的高级分析和适应性推理技能的背景,而且作为培养后续学习阶段自我评估所需反思心态的重要训练。

实用主义哲学:自我评估

实用主义哲学关注自我导向学习作为积极强化循环的有效性,其中关键技能被产生和再生产,强调学习者对其学习方法和目标的管理和控制(Brookfield, 1986; Gibbons, 2002; Grow, 1991; Mocker & Spear, 1982)。自我评估可以成为学生监控和管理自己学习的有效工具(Pintrich, 2000; Zimmerman & Schunk, 2001),使学生能够生成自己的反馈,促进持续学习并提高表现(Andrade, 2019)。

正如Andrade(2019)所建议的,自我评估涵盖了更广泛的过程和结果,包括形成性和总结性能力、过程和产品的评估。形成性评估围绕特定任务的自我效能评级,总结性自我评估强调任务后的评估,包括基于表现和程序的能力判断。这种方法超越了即时的自我效能评级,对学习过程的有效性和结果进行了更广泛的分析。
该领域的先前研究主要采用了混合方法。虽然自我效能评估可能由后台数据收集和分析,总结性自我评估通常是研究人员在评估学生基于以前作文表现的SRL技能时作为任务后问卷进行的,正如前面讨论过的,这是无效的。本研究采用了一种替代方法来评估学生的自我评估技能,特别关注学习者驱动的总结性自我评估。然而,单独的总结性自我评估无法推动持续、迭代和可持续的SDL过程,除非它与渴望能力相结合。该框架强调总结性自我评估与渴望能力的两层结构在学习周期内和跨学习周期的对齐,重点关注自主成长的培养。

方法论和实践意义

学习者潜能激发框架作为一种创新干预设计

本研究提出的“学习者潜能激发”(A2PL)框架是一种创新干预,旨在解决前几节中确定的空白。A2PL提供了一种结构化的学习方法,赋予学习者作为发起者、评估者和主要代理人的权力,积极塑造并对其战略发展路径承担责任。这种自我节奏的学习干预强调学习者在非同步在线学习环境中管理参与的时间和进展的自主性。此干预分为三个层次进行(见图4):
img-3.jpeg

图4. 学习者潜能激发方法框架(A2PL)
在个人层面,干预优先考虑基于人文哲学且对学习者有意义的做法。具体来说,学习者将被引导反思他们的抱负以及社会成就和专业成长的长期愿景。
从第二轮开始,它将整合反思实践来评估和调整这种对齐,并继续构建总结性自我评估框架,这一次超越个别任务,再次关注社会成就和专业成长的更广泛愿景,这使得新一轮的SDL得以启动,并指导下一阶段基于C2A的复杂思维任务的设计。

在任务层面,干预通过个性化方法强调建构主义认识论。学习者和GAI在现实世界情境中共同创建与学习者抱负和初始个性化路径理解内的具体目标相一致的复杂思维任务。这些任务帮助发展学习者的复杂思维技能,这将是发展总结性自我评估框架和促进自主成长的基础。

在个人×任务层面,干预侧重于实用主义哲学,学习者参与越来越清晰的路径映射的发展过程,该路径推动学习者评估所获得的资源、技能和策略与他们潜力的对齐。学习者被引导构建总结性自我评估框架,通过将其对能力、技能和策略差距的反思理解与任务对齐的个人目标相匹配来实现。这个过程旨在培养更清晰定义和战略对齐的学习路径。

然而,这项干预的整体目标并非评估总结性自我评估框架中反映的先进战略学习路径的整体完成率或复杂模式,然后将其框定为有效总结性自我评估技能的指标,代表“增加”的自主成长。增加本身不是一个静态和孤立的元素,可以在其他学习行为或结果中表现出来,而是一个动态、协作和互动的过程;具体来说,总结性自我评估的过程旨在培养与个人抱负对齐的更精确定义的战略发展路径;这一过程与目标过程内在相连并相互强化:自主成长的发展,连同相关的SDL能力和自我调节技能,本质上是一系列连续的SDL周期,作为通往各种学习目标的学习路径(见表1)。因此,这项干预的成功将取决于学习者的总结性自我评估框架及其演变轨迹是否充分反映对SDL程序和组成部分的深入分析认知,并位于更精细和情境相关的个人学习过程的战略方法中。

理论指南学习者教学目标GAI 特性复杂思维技能发展
建构主义
学习理论
社会
建构主义
反思过去的经验,识别兴趣、动机和抱负成功人士相似职业路径的例子。创新思维
批判性教育学
转变
教育
需要解决的现有问题。进行根本原因分析以识别潜在问题支持学习者发展根本原因分析技能系统思维
:–::–::–::–:
元认知、自我调节学习和反思性思维构建自我评估框架支持学习者发展自我评估技能科学思维
基于问题的学习、基于项目的学习和跨学科学习选择三种核心能力 完成任务提供一系列核心能力。创建与已识别核心能力对齐的情景任务批判性思维;解决问题的技能
形成性、作品集和真实性评估完成自我评估
调整自我评估框架
根据之前的评估框架生成反馈批判性思维

表1. A2PL 的学习阶段和周期
虽然GAI可以为学习者提供大量的信息选择——包括那些与SDL相关的信息——但它不会刻意促进结构化SDL知识的掌握。GAI的作用将仅限于在没有明确提供评估标准的情况下引导学习者进行自我发现的学习旅程。因此,只要GAI不披露评估直接与SDL相关,学习者总结性自我评估框架的能力表明在个性化背景下识别进一步发展特定领域的进展,并且其相关分支反映对SDL程序和组成部分的分析认知进入其程序和组成部分的深度,将在情境中作为学习者初步掌握这些技能并将其整合到持续、迭代学习过程中的关键指标。这种进展标志着关键能力如任务、任务×人员以及最重要的是人员层面的自我监控、自我调节、自我反思和自我评估的成功培养,共同促进自主成长的出现发展。

学习分析和GAI的适应

为了实现上述干预过程——让学习者通过引导发现而非明确指导逐步内化结构化的SDL能力——有必要超越传统的以内容为中心的调查模型。实现这一目标
需要采用动态的、学习者驱动的学习分析方法,能够积极捕捉和促进学习者在个性化和不断发展学习轨迹中对SDL过程和策略的分析参与。

在诊断分析层面上,GAI根据预先设计的评分量表“渴望潜力评分量表”(APSR)评估学生的总结性自我评估框架,该量表纳入了成分权重、关系逻辑和向量化进展,所有这些都在SDL周期的各个阶段内和跨阶段进行映射。成分相关性、关系逻辑和向量化进展指的是对每个元素相对重要性的定制评估、它们之间的相互联系以及通过A2PL的关键阶段的进展,所有这些都经过评估以确保与学习者目标的对齐,并在周期内和跨周期内持续发展。具体来说,GAI检查学习者对SDL程序和组成部分的分析认知,位于对其个人学习过程的更精细和情境相关战略方法中。重要的是,GAI的评分评估不会透露给学习者。

通过交互分析,这些基于先前评分评估的GAI提供持续、建设性、个性化和针对性反馈,旨在促进与学习者个人目标和对社会成就和专业成长的长期愿景相一致的学生总结性自我评估框架的进步。具体来说,反馈将以引人深思、有序的提示形式呈现,校准到最佳的认知挑战水平,旨在促进引导发现并促进学习者深入反思参与。

5. 局限性和未来方向

尽管本研究提出了一个整合的概念框架,重新想象通过GAI和LA的互动实现的自主成长,但仍需承认几个理论局限性。

首先,尽管A2PL模型强调学习者主体性和持续的自主发展,其基础仍然主要是概念性的。该框架假定学习者将以反思和战略性的方式积极参与GAI支持的反馈系统。然而,个体学习者内在动机、元认知成熟度和社会文化定位的变化可能显著影响其实现此类路径的能力。这些深深嵌入个人和情境现实的人类因素在当前模型中未得到充分考虑。

其次,该框架假定学习者与GAI系统之间相对和谐的合作,将AI定位为非指令性指南而非权威指令。然而,人类-AI互动的心理动力学——包括感知权威、判断外部化和潜在内部自我调节机制减弱的风险——仍未得到充分理论化。未来研究必须批判性地调查学习者如何内化或抵制AI中介的脚手架,特别是在不同的社会文化和教育背景下。

第三,自主成长的概念虽然在理论上不同于传统的SDL,但仍需更深入的理论提炼。具体来说,必须阐明迭代自我导向周期和长期抱负轨迹之间的清晰操作定义和区别。如果没有实证依据,就存在混淆持续动机与战略技能发展的风险,或过度简化抱负、主体性和学习过程之间的复杂互动。

最后,该框架主要借鉴了人文主义、建构主义和实用主义哲学传统。虽然这些视角有力地支持以学习者为中心的成长,但整合批判理论——特别是那些质疑权力、准入和技术决定论问题的理论——可以丰富该模型。未来的研究可以探讨社会经济不平等、抱负的文化叙事和系统性教育结构如何与或挑战自主成长的发展。

鉴于这些局限性,未来研究应优先考虑理论深化、在不同学习者群体中的实证验证,以及对嵌入在AI中介教育框架中的社会文化假设的批判性探究。通过这样做,该领域可以朝着更加细致、公平和可持续的数字时代学习者主体性愿景迈进。

6. 结论

本文旨在探讨有效应用GAI以促进自主成长,将其概念化为学习者在不同情境和任务中驱动持续和可持续SDL周期的能力。这一过程的核心是战略性精炼学习路径的发展,与学习者即时的个人目标和长期的社会成就及专业成长愿景相一致。

拟议的干预框架A2PL通过将三个相互关联的层次——个人层面、个人×任务层面和任务层面——整合成一个有机系统,区别于现有的SDL方法。该系统整体促进学习者对SDL程序和组成部分的分析认知,位于日益个性化和情境相关战略路径中。通过将GAI不仅仅视为内容提供者,而是作为这一发展架构中的协作支架,A2PL旨在培养学习者具备更大的自主性、韧性和目标感,以导航快速变化的知识景观中的复杂性。

这一概念框架通过集中于学习者的抱负主体性和迭代自我建构,而不是任务完成或短期绩效提升,推动了当前关于SDL、学习分析和教育中AI的讨论。它强调数字时代的可持续教育公平不仅需要获取信息和资源,还需要内化战略能力以构想、计划、评估和改进个人发展轨迹。

并且需要澄清的是,本研究本质上是概念性的。主要目标是构建一个理论框架,综合关键哲学基础,重新定义核心
概念,并提出一个连贯的模型,以促进AI中介学习环境中自我导向成长的发展。详细的技术实施、平台工程或算法设计考虑不在本文范围之内,而是保留给未来的研究方向,专注于实证验证和应用开发。

未来的研究可以继续详细阐述、实证检验并批判性地完善本文提出的自我导向成长原则。随着教育越来越多地与AI中介环境交织在一起,确保技术干预放大而不是削弱学习者对未来的所有权变得越来越重要。本研究为这一愿景提供了概念上的垫脚石。

致谢

我要感谢陈文莉博士对我早期草稿的宝贵评论和建议。

参考文献

  1. Ali, F., Choy, D., Divaharan, S., Tay, H. Y., & Chen, W. (2023). Supporting self-directed learning and self-assessment using TeacherGAIA, a generative AI chatbot application: Learning approaches and prompt engineering. Learning Research and Practice, 9(26), 113. https://doi.org/10.1080/23735082.2023.2258886
    1. Ally, M., and Perris, K. (2022). Artificial intelligence in the fourth industrial revolution to educate for sustainable development. Can. J. Learn. Technol. 48: Article 4. doi: 10.21432 / c j l t 28287 10.21432 / \mathrm{cjlt} 28287 10.21432/cjlt28287
    1. Amin, M., Corebima, A., Zubaidah, S., & Mahanal, M. (2020). The correlation between metacognitive skills and critical thinking skills at the implementation of four different learning strategies in animal physiology lectures. European Journal of Educational Research.
    1. Andrade, H. L. (2019). A critical review of research on student self-assessment. Frontiers in Education, 4, 87. https://doi.org/10.3389/feduc.2019.00087
    1. Appadurai, A. (2004). The capacity to aspire: culture and the terms of recognition. In V. Rao, & M. Walton (Eds.), Culture and Public Action (pp. 59-84). Stanford, CA: Stanford University Press.
    1. Arslan, A. (2018). Investigating the predictive role of critical thinking on metacognition with structural equation modeling. MOJES: Malaysian Online Journal of Educational Sciences.
    1. Bannert, M., Molenaar, I., Azevedo, R., Järvelä, S., & Gašević, D. (2017). Relevance of learning analytics to measure and support students’ learning in adaptive educational technologies. In Proceedings of the Seventh International Learning Analytics & Knowledge Conference (LAK '17) (pp. 568-569). https://doi.org/10.1145/3027385.3029463
    1. Barzegarbafrouee, F., Farzin, M., & Zare, M. (2019). The role of reading metacognitive strategies in the prediction of critical thinking in student-teachers in Shiraz. Advances in Cognitive Sciences.
    1. Bandura, A. (2006). Toward a psychology of human agency. Perspectives on Psychological Science, 1(2), 164-180. https://doi.org/10.1111/j.1745-6916.2006.00011.x
      10.10. Bauman, Z. (2009). Education in the liquid-modern setting. Power and Education, 1(2), 157-166. https://doi.org/10.2304/power.2009.1.2.157
  2. Brookfield, S. D. (1986). Understanding and facilitating adult learning: A comprehensive analysis of principles and effective practices. Jossey-Bass.
    1. Bruner, J. S. (1961). The act of discovery. Harvard Educational Review, 31(1), 21-32.
    1. Chang, D. H., Lin, M. P. C., Hajian, S., & Wang, Q. Q. (2023). Educational design principles of using AI chatbot that supports self-regulated learning in education: Goal setting, feedback, and personalization. Sustainability, 15(17), 12921
    1. 陈, Z., 和刘, B. (2018). 终身机器学习. 瑞士Cham: Springer International Publishing, 1-20.
    1. Chassignol, M., Khoroshavin, A., Klimova, A., & Bilyatdinova, A. (2018). 教育中的人工智能趋势:叙述性概述. Procedia Computer Science, 136, 16-24. https://doi.org/10.1016/j.procs.2018.08.233
    1. Chiu, T. K. F. (2024). 应用自我决定理论通过生成式人工智能促进自调节学习的分类工具:ChatGPT案例. 教育技术研究与发展. https://doi.org/10.1007/s11423-024-10366-w
    1. Clow, D. (2013). 学习分析概述. 高等教育教学, 18(6), 683-695.
    1. Cobb, P., & Bowers, J. (1999). 认知和情境学习视角在理论与实践中的应用. 教育研究者, 28(2), 4-15
    1. Cotton, D. R. E., Cotton, P., & Shipway, J. R. (2023). 聊天与作弊:ChatGPT时代的学术诚信保障. 初级保健教育, 34(2), 1-2. https://doi.org/10.1080/14739879.2023.2189031
    1. Correa, J., Ossa, F., & Sanhueza, C. (2019). Chillán一所高中的新生在推理偏差、元认知和动机方面的批判性思维研究. 教育研究与经验期刊.
    1. Dalton, P. S., Ghosal, S., & Mani, A. (2016). 贫困与抱负失败. 经济学杂志, 126(590), 165-188. https://doi.org/10.1111/ecoj. 12210
    1. De Corte, E. (2018). 学习设计:创建强大的自我调节技能学习环境. 理论与应用研究, 4(1), 30ñ46.
    1. Dempere, J., Modugu, K. P., Hesham, A., & Ramasamy, L. (2023). Chatgpt对高等教育的影响. 教育前沿, 8, 1206936. https://doi.org/10.3389/feduc.2023.1206936
    1. Efklides, A. (2011). 自我调节学习中元认知与动机和情感的交互作用:MASRL模型. 教育心理学家, 46(1), 6-25. https://doi.org/10.1080/00461520.2011.538645
    1. Elias, J.L., & Merriam, S.B. (1995). 成人教育的哲学基础. 美国佛罗里达州墨尔本: Krieger Publishing.
    1. Ferguson, R. (2012). 2012年学习分析的状态:回顾与未来挑战. 技术报告 KMI-12-01, 知识媒体研究所, 英国开放大学, UK.
    1. Fauzi, F., Tuhuteru, L., Sampe, F., Ausat, A., & Hatta, H. (2023). 分析ChatGPT在高等教育中提高学生生产力的作用. 教育期刊, 5(4), 14886-14891. https://doi.org/10.31004/joe.v5i4.2563
    1. Gale, T. (2014). 在全球高等教育领域重新想象学生公平与抱负. 在J. Smith & A. Brown (Eds.), 教育中的平等:公平与包容 (pp. 195-215). Sense Publishers. https://doi.org/10.1007/978-94-6209-692-9_15
    1. Gao, C. A., Howard, F. M., Markov, N. S., Dyer, E. C., Ramesh, S., Luo, Y., & Pearson, A. T. (2022). 使用人工输出检测器、剽窃检测器和盲审人类评审员比较ChatGPT生成的科学摘要与原始摘要. BioRxiv. 2022.12.23.521610
    1. Gibbons, M. (2002). 自我导向学习手册:挑战青少年学生的卓越表现. McGraw-Hill.
    1. Groen, J., & Kawalilak, C. (2014). 成人学习路径:专业和教育叙事. 加拿大安大略省多伦多:加拿大学者出版社.
    1. Grow, G. O. (1991). 教会学习者成为自我导向的学习者. 成人教育季刊, 41(3), 125-149. https://doi.org/10.1177/0741713691041003001
    1. Hsu, T. C., Chang, C., & Jen, T. H. (2023). 使用自我调节学习策略的人工智能图像识别:对英语学习者词汇习得、学习焦虑和学习行为的影响. 互动学习环境, 1-19.
    1. Jonassen, D.H. (1999). 设计建构主义学习环境. 在C.M. Reigeluth (Ed.), 教学设计理论与模型:新的教学理论范式 (Vol. II, pp. 215-239). Mahwah, NJ: Lawrence Erlbaum.
    1. Jin, S. H., Im, K., Yoo, M., et al. (2023). 使用人工智能应用程序在线学习中支持学生的自我调节学习. 高等教育技术国际期刊, 20(37). https://doi.org/10.1186/s41239-023-00406-5
    1. Kasneci, E., Sessink, O., & Flemming, D. (2023). ChatGPT for Good? 关于大型语言模型在教育中的机遇与挑战. 学习与教学, 101754. https://doi.org/10.1016/j.learninstruc.2023.101754
    1. Knowles, M. S. (1970). 现代成人教育实践:成人教育学与教育学的对比. 协会出版社.
    1. Knowles, M. S. (1975). 自主学习:学习者和教师指南. Follett.
    1. Lashari, A. A., & Umrani, S. (2023). 在人工智能时代重新构想自主语言学习:系统综述. 双年度研究期刊Grassroots, 57 ( 1 ) , 92 − 114 57(1), 92-114 57(1),92114.
    1. Leach, N. (2018). 具有影响力的后工业社会技能学习环境:培养青少年人文技能的人文方法. 人文心理学杂志. 提前在线发表. doi:10.1177/0022167818779948.
    1. Long, P., & Siemens, G. (2011). 拨开迷雾:学习和教育中的分析. EDUCAUSE Review, 46(5), 31-40.
    1. Lukitasari, M., Hasan, M., & Murtafiah, T. (2019). 使用批判性分析发展生物学中的元认知能力和批判性思维技能. JPBI (印度尼西亚生物教育期刊).
    1. Mocker, D. W., & Spear, G. E. (1982). 终身学习:自我导向学习的概念化及其应用. 成人教育季刊, 32(3), 151-156. https://doi.org/10.1177/0741713682032003001
    1. Morin, E. (2007). 受限复杂性,普遍复杂性. 在世界观、科学和我们:哲学与复杂性 (pp. 5-29). 世界科学出版社.
    1. Morris, T. H. (2019). 自我导向学习:快速变化世界中的基本能力. 国际教育评论, 65(4), 633-653. https://doi.org/10.1007/s11159-019-09793-2
    1. National Youth Council (NYC) & Institute of Policy Studies (IPS) Social Lab. (2024, August 5). 挑战自我以实现生活目标对年轻人的生活满意度至关重要:新加坡青年转型与演变路径研究(Youth STEPS)[媒体发布]. 检索自 https://www.nyc.gov.sg/-/media/images/nyc/newsroom/media-releases/2024/youth-steps-20media-release.pdf
    1. Ng, D. T. K., Tan, C. W., & Leung, J. K. L. (2024). 通过ChatGPT增强学生的自我调节学习和科学教育:开创性的试点研究. 英国教育技术杂志. https://doi.org/10.1111/bjet. 13454
    1. OpenAI, Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I., … & Jain, S. (2024). GPT-4 技术报告. arXiv. https://doi.org/10.48550/arXiv.2303.08774
    1. Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C., Mishkin, P., … & Ziegler, D. M. (2022). 使用人类反馈训练语言模型遵循指令. arXiv预印本 arXiv:2203.02155. https://arxiv.org/abs/2203.02155
    1. Panadero, E. (2017). 自我调节学习的回顾:六个模型和四个研究方向. 心理学前沿, 8, 422. https://doi.org/10.3389/fpsyg.2017.00422
    1. Papamitsiou, Z., & Economides, A. A. (2014). 实践中的学习分析和教育数据挖掘:实证证据的系统文献回顾. 教育技术与社会, 17(4), 49-64.
    1. Passi, S., & Vorvoreanu, M. (2022). 过度依赖人工智能:文献回顾. 微软技术报告 MSR-TR-2022-12. 微软公司.
    1. Pearson. (2019). 全球学习者调查. Pearson. 检索自 https://www.pearson.com/content/dam/global-store/global/resources/Pearson_Global_Learner_Survey_2019.pdf
    1. Pérez-Ortiz, M., Novak, E., Bulathwela, S., Shawe-Taylor, J. (2020). 基于AI的学习伴侣促进全民终身学习机会的意见系列报告. https://arxiv.org/ftp/arxiv/papers/2112/2112.01242.pdf
    1. Pintrich, P. R. (2003). 动机科学视角下学生动机在学习和教学背景中的角色. 教育心理学杂志, 95(4), 667 − 686 667-686 667686.
    1. Ramírez-Montoya, M. S., Castillo-Martínez, I. M., Sanabria-Z, J., & Miranda, J. (2022). 教育4.0和开放式创新框架下的复杂思维;系统文献回顾. 开放创新杂志:技术、市场和复杂性, 8(1), 4, doi:10.3390/joitmc8010004
    1. Roe, J., & Perkins, M. (2024). 生成式人工智能在自主学习中的应用:范围审查. arXiv预印本, arXiv:2411.07677. https://doi.org/10.48550/arXiv.2411.07677
    1. Rogers, C. R. (1969). 自由学习. Charles E. Merrill.
    1. Sanabria-Z, J., Alfaro Ponce, B., Argüelles Cruz, A., and Ramírez Montoya, M. S. (2023). 基于AI的复杂思维评估平台设计:使用过渡设计方法的创意马拉松案例研究. 可用地址: https://repositorio.tec.mx/handle/11285/651579
    1. Scardamalia, M., & Bereiter, C. (2006). 知识构建:理论、教学法和技术. 在K. Sawyer(编),剑桥学习科学手册(第97-118页)。剑桥大学出版社。
    1. Schunk, D. H. (2020). 学习理论:教育视角(第8版)。皮尔逊。
    1. SkillsFuture Singapore. (未注明日期)。SkillsFuture运动。SkillsFuture。检索于2024年12月3日,来自https://www.skillsfuture.gov.sg
    1. Siemens, G., & Baker, R. S. J. D. (2012). 学习分析和教育数据挖掘:走向沟通与协作。在第二届国际学习分析与知识会议论文集(第252-254页)。ACM。
    1. Simpson, T. L. (2002). 我敢反对建构主义理论吗?教育论坛,66, 347 − 354 347-354 347354
    1. Silva Pacheco, C., & Iturra Herrera, C. (2021). 复杂思维认知过程的概念提案及操作定义。思考技能与创造力,39,100794. https://doi.org/10.1016/j.tsc.2020.100794
    1. Tang, J., and Deng, Y. (2022). 基于改进B/S三层结构系统的英语分级教学助教专家系统设计模型。移动信息系统,2022:e4167760,1-9。doi: 10.1155/2022/4167760
    1. Tough, A. (1971). 成人的学习项目:成人学习理论与实践的新方法。安大略省教育研究所。
    1. Thakkar, D., Kumar, N., & Sambasivan, N. (2020). 朝着为职业工人服务的人工智能驱动未来迈进 [论文陈述]。计算机系统中的人为因素会议 - 论文集。doi:10.1145/3313831.3376674
    1. Troka, M. (2022). 通过多媒体和新技术提升终身学习。国际教育技术与人工智能杂志,1(1),5-5. https://topazart.info/e-journals/index.php/ijetai/article/view/2
    1. Turner, J. C., & Patrick, H. (2008). 动机如何发展以及为何发生变化?重构动机研究。教育心理学家,43(3),119-131. https://doi.org/10.1080/00461520802178441
    1. 联合国教科文组织. (2019). 教育中的人工智能:可持续发展的挑战与机遇。https://unesdoc.unesco.org/ark:/48223/pf0000366994
    1. 联合国教科文组织. (2019). 关于人工智能与教育的北京共识。检索自 https://unesdoc.unesco.org/ark:/48223/pf0000368303
    1. 联合国教科文组织. (2021). 人工智能与教育:政策制定者指南。检索自 https://unesdoc.unesco.org/ark:/48223/pf0000376709
    1. 联合国教科文组织终身学习研究所. (未注明日期). 终身学习:联合国教科文组织终身学习研究所(UIL)的任务。联合国教科文组织终身学习研究所。https://www.uil.unesco.org/en/unesco-institute/mandate/lifelonglearning?hub=141
    1. 吴, D., 张, S., 马, Z., 岳, X.-G., & 董, R. K. (2024). 挖掘潜力:关键因素塑造在AI增强教育环境中本科生的自主学习。系统,12(9),332. https://doi.org/10.3390/systems12090332
    1. Yan, L., Martinez-Maldonado, R., & Gašević, D. (2024). 生成式人工智能在学习分析中的应用:通过学习分析周期上下文化机会和挑战。学习分析,1(1),17页。
    1. 杨, X., 王, Q., & 吕, J. (2024). 评估ChatGPT的教育能力和应用潜力。华东师范大学教育评论,7(3),699-713. https://doi.org/10.1177/20965311231210006
    1. Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). 高等教育中人工智能应用的研究系统回顾——教育工作者在哪里?国际高等教育技术杂志,16,文章39. https://doi.org/10.1186/s41239-019-0171-0
    1. Zhai, C., Wibowo, S., & Li, L. D. (2024). 过度依赖AI对话系统对学生认知能力的影响:系统回顾。智能学习环境,11(28). https://doi.org/10.1186/s40561-024-00316-7
    1. Zipin, L., Sellar, S., Brennan, M., & Gale, T. (2013年10月8日). 边缘化地区教育未来:重新思考和研究抱负的社会学框架。教育哲学与理论。doi:10.1080/00131857.2013.839376
    1. Zimmerman, B. J., & Schunk, D. H. (2001). 自我调节学习与学业成就:理论观点(第2版)。Routledge.
    1. Zou, D., Xie, H., Wang, F. L., & Lum, E. (2023). 教育中人工智能的未来趋势和研究问题。计算机与教育:人工智能,4,100084. https://doi.org/10.1016/j.caeai.2022.100084
      参考论文:https://arxiv.org/pdf/2504.20851
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Paper易论

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值