338. Counting Bits

Given a non negative integer number num. For every numbers i in the range 0 ≤ i ≤ num calculate the number of 1's in their binary representation and return them as an array.

Example:
For num = 5 you should return [0,1,1,2,1,2].

Follow up:

  • It is very easy to come up with a solution with run time O(n*sizeof(integer)). But can you do it in linear time O(n) /possibly in a single pass?
  • Space complexity should be O(n).
  • Can you do it like a boss? Do it without using any builtin function like __builtin_popcount in c++ or in any other language.

思路:找规律

1.从0考试,为1的位的个数0-1-(1;2)-(1,2;3,4)-(1,2,3,4;2,3,4,5)

2.初始化为0后,res[i]=res[i/2]+(i%2)

3.这个比较巧,因为(i&(i-1))可以消去i最低为1的位,所以i比(i&(i-1))多一个1,并可以利用前面获得的数推知当前数为1的位数

代码1:

class Solution {
public:
    vector<int> countBits(int num) {
        if(num < 0) return {};
        vector<int> rlt(num+1, 0);
                
        for(int i = 1; i <= num; i++){//cout<<i%2<<"aaa"<<i/2<<endl;
            if(i%2 == 0) rlt[i] = rlt[i/2];
            else rlt[i] = rlt[i-1] + 1;
        }
        return rlt;
    
        /*
        if (num == 0) return {0};
        vector<int> res{0, 1};

        int k = 2, i = 2;
        while (i <= num) {
            for (i = pow(2, k - 1); i < pow(2, k); ++i) {
                if (i > num) break;
                int t = (pow(2, k) - pow(2, k - 1)) / 2;
                if (i < pow(2, k - 1) + t) res.push_back(res[i - t]);
                else res.push_back(res[i - t] + 1);
            }
            ++k;
        }
        
        return res;*/
    }
};

代码2:

class Solution {
public:
    vector<int> countBits(int num) {
        vector<int> res(num+1,0);//从0开始,所以是num+1,否则会超出索引范围
        if(num==0){return res;}
        res[1]=1;
        if(num==1){return res;}
        for(int i=2;i<=num;i++){
            int ind=i/2;
            res[i]=res[ind]+(i%2);
        }
        return res;
    }
};
代码3:
class Solution {
public:
    vector<int> countBits(int num) {
        vector<int> ret(num+1, 0);
        for (int i = 1; i <= num; ++i)
            ret[i] = ret[i&(i-1)] + 1;
        return ret;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值