Given a non negative integer number num. For every numbers i in the range 0 ≤ i ≤ num calculate the number of 1's in their binary representation and return them as an array.
Example:
For num = 5
you should return [0,1,1,2,1,2]
.
Follow up:
- It is very easy to come up with a solution with run time O(n*sizeof(integer)). But can you do it in linear time O(n) /possibly in a single pass?
- Space complexity should be O(n).
- Can you do it like a boss? Do it without using any builtin function like __builtin_popcount in c++ or in any other language.
思路:找规律
1.从0考试,为1的位的个数0-1-(1;2)-(1,2;3,4)-(1,2,3,4;2,3,4,5)
2.初始化为0后,res[i]=res[i/2]+(i%2)
3.这个比较巧,因为(i&(i-1))可以消去i最低为1的位,所以i比(i&(i-1))多一个1,并可以利用前面获得的数推知当前数为1的位数
代码1:
class Solution {
public:
vector<int> countBits(int num) {
if(num < 0) return {};
vector<int> rlt(num+1, 0);
for(int i = 1; i <= num; i++){//cout<<i%2<<"aaa"<<i/2<<endl;
if(i%2 == 0) rlt[i] = rlt[i/2];
else rlt[i] = rlt[i-1] + 1;
}
return rlt;
/*
if (num == 0) return {0};
vector<int> res{0, 1};
int k = 2, i = 2;
while (i <= num) {
for (i = pow(2, k - 1); i < pow(2, k); ++i) {
if (i > num) break;
int t = (pow(2, k) - pow(2, k - 1)) / 2;
if (i < pow(2, k - 1) + t) res.push_back(res[i - t]);
else res.push_back(res[i - t] + 1);
}
++k;
}
return res;*/
}
};
代码2:
class Solution {
public:
vector<int> countBits(int num) {
vector<int> res(num+1,0);//从0开始,所以是num+1,否则会超出索引范围
if(num==0){return res;}
res[1]=1;
if(num==1){return res;}
for(int i=2;i<=num;i++){
int ind=i/2;
res[i]=res[ind]+(i%2);
}
return res;
}
};
代码3:
class Solution {
public:
vector<int> countBits(int num) {
vector<int> ret(num+1, 0);
for (int i = 1; i <= num; ++i)
ret[i] = ret[i&(i-1)] + 1;
return ret;
}
};