ClickHouse 是速度最快、资源效率最高的 OLAP 数据库,可以在毫秒内查询数十亿行,并受到数千家公司的实时分析信赖。
这里有七个技巧,可以帮助你启动一个生产的ClickHouse集群,避免最常见的错误。
提示 1:使用多个副本
在测试ClickHouse时,很自然地部署了一个只有一台主机的配置,因为您可能不想使用额外的资源或承担不必要的费用。
这在开发或测试环境中没有错,但如果您只想在生产环境中使用一台主机,这可能会付出代价。如果发生故障,并且只有一个副本和一台主机,则有丢失所有数据的风险。
对于生产负载,应使用多个主机并在它们之间复制数据。它不仅可以确保在主机发生故障时数据保持安全,还可以平衡多个主机上的用户负载,从而加快资源密集型查询的速度。
提示2:不要对RAM感到害羞
ClickHouse 速度很快,但其速度取决于可用资源,尤其是 RAM。在开发或测试环境中以最少的 RAM 运行 ClickHouse 集群时,您可以看到出色的性能,但随着负载的增加,这可能会发生变化。
在具有大量同时读取和写入操作的生产环境中,RAM 的不足将更加明显。如果您的 ClickHouse 集群没有足够的内存,它会变慢,并且执行复杂的查询将花费更长的时间。
最重要的是,当ClickHouse执行资源密集型操作时,它可能会与操作系统本身竞争RAM,最终导致OOM,停机和数据丢失。
ClickHouse 的开发人员建议使用至少 16 GB 的 RAM 来确保集群稳定。您可以选择较少的内存,但只有在您知道负载不会很高时才这样做。
提示 3:选择表格引擎时要三思而后行
ClickHouse 支持多种具有不同特性的表引擎,但 MergeTree 引擎很可能是理想的选择。专用表是为特定用途量身定制的,但具有乍一看可能并不明显的局限性。日志系列引擎似乎是日志的理想选择,但它们不支持复制,并且其数据库大小有限。
MergeTree系列中的表引擎是默认选择,它们提供了ClickHouse闻名的核心数据功能。除非您确切知道为什么需要不同的表引擎,否则请使用 MergeTree 系列中的引擎,它将涵盖您的大多数用例。
提示 4:主键不要使用超过三列
ClickHouse中的主键与传统数据库中的主键用途不同。它们不确保唯一性,而是定义数据的存储和检索方式。
如果使用所有列作为主键,则可能会受益于更快的查询。然而,ClickHouse的性能不仅取决于读取数据,还取决于写入数据。当主键包含许多列时,当数据写入整个集群时,整个集群的速度会变慢。
ClickHouse中主键的最佳大小是两列或三列,因此可以运行更快的查询,但不会减慢数据插入速度。选择列时,请考虑将要发出的请求,并选择通常会在筛选器中选择的列。
提示 5:避免使用小插件
当您在ClickHouse中插入数据时,它首先将包含此数据的部分保存到磁盘中。然后,它对这些数据进行排序、合并,并将其插入到后台数据库中的正确位置。如果您经常插入小块数据,ClickHouse 将为每个小插入创建一个部分。它会减慢整个集群的速度,您可能会收到“太多部分”错误。
为了有效地插入数据,请以大块的形式添加数据,并避免每秒发送多个插入语句。ClickHouse 可以高速插入大量数据——即使是每秒 100K 行也可以——但它应该是一个批量插入,而不是多个较小的插入。
如果数据分量很小,请考虑使用外部系统,例如用于制作批量数据。ClickHouse 与 Kafka 集成得很好,可以有效地使用其中的数据。<a>Managed Kafka</a>
提示6:想想你将如何摆脱重复的数据
ClickHouse中的主键并不能确保数据是唯一的。与其他数据库不同,如果您在ClickHouse中插入重复数据,它将按原样添加。
因此,最好的选择是在插入数据之前确保数据是唯一的。例如,您可以在流处理应用程序(如 Apache Kafka)中执行此操作。如果无法实现,则在运行查询时有一些方法可以处理它。一种选择是仅用于选择重复行的最后一个版本。您还可以使用设计删除重复条目的引擎。最后,您可以运行以合并数据部分,但这是一项资源要求很高的操作,并且只有在知道它不会影响集群性能时才应该运行它。`argMax`
ReplacingMergeTree
`OPTIMIZE TABLE ... FINAL`
提示 7:不要为每列创建索引
就像使用主键一样,您可能希望使用多个索引来提高性能。当您使用与索引匹配的筛选器查询数据时,可能会出现这种情况,但总体而言,它不会帮助您更快地进行查询。
同时,您肯定会体验到这种策略的缺点。多个索引会显著减慢数据插入速度,因为 ClickHouse 需要将数据写入正确的位置,然后更新索引。
如果要在生产集群中创建索引,请选择与主键关联的列。