R-CNN

R-CNN framework

下图展示了R-CNN检测框架的流程。
1. 输入图片;
2. 对输入图片应用selective search算法,产生约2,000个region proposals(实际为1565个,详见实验结果);
3. 对所有的region proposals进行预处理,使其大小相等(277*277*3,详见CNN网络定义)。并将处理后的region proposals通过CNN进行特征提取,每个region proposal产生一个固定大小的特征向量(4096维,详见CNN网络定义);
4. 对所有特征向量进行分类(原文采用SVM对特征向量进行分类,这里使用CNN直接分类)。


这里写图片描述


R-CNN system overview

实验

源代码见 (Caffe/examples/detection.ipynb)

!mkdir -p _temp

# 在_temp文件夹下的det_input.txt文件中写入输入图片
!echo `pwd`/images/fish-bike.jpg > _temp/det_input.txt

# 对输入图片应用selective search算法产生region proposals,并将产生的region proposals 经过训练好的CNN进行分类(200类)。
# CNN结构为Caffe/models/bvlc_reference_rcnn_ilsvrc13/deploy.prototxt
# 预训练的参数在models/bvlc_reference_rcnn_ilsvrc13/bvlc_reference_rcnn_ilsvrc13.caffemodel中
# 将所有region proposals的分类结果以及bouning box位置写入_temp文件夹下的det_output.h5中
!../python/detect.py --crop_mode=selective_search --pretrained_model=../models/bvlc_reference_rcnn_ilsvrc13/bvlc_reference_rcnn_ilsvrc13.caffemodel --model_def=../models/bvlc_reference_rcnn_ilsvrc13/deploy.prototxt --gpu --raw_scale=255 _temp/det_input.txt _temp/det_output.h5
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline

# 读入_temp文件夹下的det_output.h5文件,
df = pd.read_hdf('_temp/det_output.h5', 'df')
print(df.shape)
print(df.columns)
print(df.iloc[0])
# predictions_df 
# 行:1565,每行代表一张图片
# 列:200,每列代表当前region proposal 为Caffe/data/ilsvrc12/det_synset_words.txt中某类的激活值
with open('../data/ilsvrc12/det_synset_words.txt') as f:
    labels_df = pd.DataFrame([
        {
            'synset_id': l.strip().split(' ')[0],
            'name': ' '.join(l.strip().split(' ')[1:]).split(',')[0]
        }
        for l in f.readlines()
    ])
predictions_df = pd.DataFrame(np.vstack(df.prediction.values), columns=labels_df['name'])
print(predictions_df.iloc[0])
# 可视化1565 * 200 的激活值
plt.gray()
plt.matshow(predictions_df.values)
plt.xlabel('Classes')
plt.ylabel('Windows')
# 得出图片中最有可能出现的前10个类别
max_s = predictions_df.max(0)
max_s.sort_values(ascending=False)
print(max_s[:10])
# 绘制出前两个类别对象的bounding box
# Find, print, and display the top detections: person and bicycle.
i = predictions_df['person'].argmax()
j = predictions_df['bicycle'].argmax()

# Show top predictions for top detection.
f = pd.Series(df['prediction'].iloc[i], index=labels_df['name'])
print('Top detection:')
print(f.sort_values(ascending=False)[:5])
print('')

# Show top predictions for second-best detection.
f = pd.Series(df['prediction'].iloc[j], index=labels_df['name'])
print('Second-best detection:')
print(f.sort_values(ascending=False)[:5])

# Show top detection in red, second-best top detection in blue.
im = plt.imread('images/fish-bike.jpg')
plt.imshow(im)
currentAxis = plt.gca()

det = df.iloc[i]
coords = (det['xmin'], det['ymin']), det['xmax'] - det['xmin'], det['ymax'] - det['ymin']
currentAxis.add_patch(plt.Rectangle(*coords, fill=False, edgecolor='r', linewidth=5))

det = df.iloc[j]
coords = (det['xmin'], det['ymin']), det['xmax'] - det['xmin'], det['ymax'] - det['ymin']
currentAxis.add_patch(plt.Rectangle(*coords, fill=False, edgecolor='b', linewidth=5))
# Find, print, and display the top detections: person and bicycle.
i = predictions_df['person'].argmax()
j = predictions_df['bicycle'].argmax()

# Show top predictions for top detection.
f = pd.Series(df['prediction'].iloc[i], index=labels_df['name'])
print('Top detection:')
print(f.sort_values(ascending=False)[:5])
print('')

# Show top predictions for second-best detection.
f = pd.Series(df['prediction'].iloc[j], index=labels_df['name'])
print('Second-best detection:')
print(f.sort_values(ascending=False)[:5])

# Show top detection in red, second-best top detection in blue.
im = plt.imread('images/fish-bike.jpg')
plt.imshow(im)
currentAxis = plt.gca()

det = df.iloc[i]
coords = (det['xmin'], det['ymin']), det['xmax'] - det['xmin'], det['ymax'] - det['ymin']
currentAxis.add_patch(plt.Rectangle(*coords, fill=False, edgecolor='r', linewidth=5))

det = df.iloc[j]
coords = (det['xmin'], det['ymin']), det['xmax'] - det['xmin'], det['ymax'] - det['ymin']
currentAxis.add_patch(plt.Rectangle(*coords, fill=False, edgecolor='b', linewidth=5))
def nms_detections(dets, overlap=0.3):
    """
    Non-maximum suppression: Greedily select high-scoring detections and
    skip detections that are significantly covered by a previously
    selected detection.

    This version is translated from Matlab code by Tomasz Malisiewicz,
    who sped up Pedro Felzenszwalb's code.

    Parameters
    ----------
    dets: ndarray
        each row is ['xmin', 'ymin', 'xmax', 'ymax', 'score']
    overlap: float
        minimum overlap ratio (0.3 default)

    Output
    ------
    dets: ndarray
        remaining after suppression.
    """
    x1 = dets[:, 0]
    y1 = dets[:, 1]
    x2 = dets[:, 2]
    y2 = dets[:, 3]
    ind = np.argsort(dets[:, 4])

    w = x2 - x1
    h = y2 - y1
    area = (w * h).astype(float)

    pick = []
    while len(ind) > 0:
        i = ind[-1]
        pick.append(i)
        ind = ind[:-1]

        xx1 = np.maximum(x1[i], x1[ind])
        yy1 = np.maximum(y1[i], y1[ind])
        xx2 = np.minimum(x2[i], x2[ind])
        yy2 = np.minimum(y2[i], y2[ind])

        w = np.maximum(0., xx2 - xx1)
        h = np.maximum(0., yy2 - yy1)

        wh = w * h
        o = wh / (area[i] + area[ind] - wh)

        ind = ind[np.nonzero(o <= overlap)[0]]

    return dets[pick, :]
scores = predictions_df['bicycle']
windows = df[['xmin', 'ymin', 'xmax', 'ymax']].values
dets = np.hstack((windows, scores[:, np.newaxis]))
nms_dets = nms_detections(dets)
plt.imshow(im)
currentAxis = plt.gca()
colors = ['r', 'b', 'y']
for c, det in zip(colors, nms_dets[:3]):
    currentAxis.add_patch(
        plt.Rectangle((det[0], det[1]), det[2]-det[0], det[3]-det[1],
        fill=False, edgecolor=c, linewidth=5)
    )
print 'scores:', nms_dets[:3, 4]
!rm -rf _temp
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值