区间DP
N个party 最少需要多少件衣服
最坏的情况肯定是 需要N件
按题意 如果 是 1 2 1
那么第一场穿1 第二场在1的基础上穿2 第三场脱掉2 那么就只需要2件就可以了
DP[i][j]表示从i 到j需要多少件衣服 有俩种情况, 第一种就是在i -> j - 1 中没有与j 要求穿的衣服想同的 那么就在dp[i][j-1]的基础上多加一件
还有一种就是 i -> j-1 有与j相同衣服的
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define INF 999999
typedef long long ll;
int const MAXN = 110;
int dp[MAXN][MAXN],c[MAXN];
inline int Min(int a,int b){
return a<b?a:b;
}
int main(){
int t;
while(~scanf("%d",&t)){
for(int cnt = 1;cnt <= t;cnt++){
int n;
scanf("%d",&n);
for(int i = 1;i <= n;i++){
scanf("%d",&c[i]);
}
memset(dp,0,sizeof(dp));
for(int i = 1;i <= n;i++){
for(int j = i;j <= n;j++){
dp[i][j] = j - i + 1;
}
}
for(int l = 2;l <= n;l++){
for(int i = 1;i <= n - l + 1;i++){
int j = i + l - 1;
dp[i][j] = Min(dp[i][j],dp[i][j - 1] + 1);
for(int k = i;k < j;k++){
if(c[k] == c[j]){
dp[i][j] = Min(dp[i][j],dp[i][k - 1] + dp[k + 1][j]);
}
}
//cout<<i<<" "<<j<<" "<<dp[i][j]<<endl;
}
}
printf("Case %d: %d\n",cnt,dp[1][n]);
}
}
return 0;
}