如何做肌电信号手势识别?

该博客介绍了肌电信号手势识别系统,包括3通道硬件采集模组和软件处理系统。硬件部分由肌电模组和信号放大模块构成,采集肌肉电信号;上位机负责数据读取、分析和训练,支持模型导入导出。通过Arduino串口通信,配合上位机软件进行手势识别训练,随着训练次数增加,识别准确性提高。这一技术在人工智能、医疗康复等领域有广泛应用前景。

整套的识别系统分为3通道的硬件采集模组和内置处理算法的软件处理系统。

硬件部分采用3个干电极的肌电模组和信号放大模块组成,用于采集3通道的肌肉电信号。

上位机集成了对数据进行读取,分析,训练,识别等功能算法,同时支持训练模型和采集数据的导入、导出。方便后续对数据的分析、处理。

硬件采集的数据通过串口发送给上位机。

Arduino示例代码:

void setup()
{
  Serial.begin(115200);
  delay(200);
}

void loop()
{
  int adc[3];

	//将肌电信号值保持在 0 附近
  adc[0] = analogRead(A1)-310;
  adc[1] = analogRead(A2)-310;
  adc[2] = analogRead(A3)-310;

  
  Serial.print(adc[0]);
  Serial.print(" ");
  Serial.print(adc[1]);
  Serial.print(" ");
  Serial.print(adc[2]);
  Serial.print("\n");
}

Arduino代码比较简单。主要算法都写在上位机处理软件里面了。 

在正确佩戴好3通道的干电极肌肉电采集模组后,菜单栏中点击"工具" , 打开arduino的 " 串口绘图器 " ,握拳可以观察到肌电的信号变化

</

### 电信号手势识别算法的实现方法 电信号(EMG)是一种由肉收缩产生的生物电信号,其在手势识别中的应用主要依赖于信号采集、预处理、特征提取以及模式识别等关键步骤[^1]。以下是对电信号手势识别算法实现方法的详细说明: #### 1. 信号采集 电信号的采集通常通过专用设备完成,例如Trigno无线电采集系统或其他类似的多通道采集设备[^4]。这些设备能够实时记录肉活动时产生的电信号。采集到的原始数据可能包含噪声和干扰,因此需要进一步处理。 #### 2. 信号预处理 为了提高信号质量,需对采集到的电信号进行预处理。常用的方法包括: - **滤波**:利用带通滤波器去除高频噪声和低频漂移。 - **去噪**:基于小波变换的方法可以有效去除电信号中的噪声,同时保留信号的有效信息[^3]。 - **移动平均法**:平滑信号以减少短时间内的波动。 #### 3. 特征提取 特征提取是手势识别的核心环节之一。常见的特征提取方法包括: - **时域特征**:如均值绝对值(MAV)、波形长度(WL)、零交叉率(ZC)等。 - **频域特征**:如功率谱密度(PSD)、频谱熵等。 - **稀疏特征**:使用KSVD算法提取电信号的稀疏表示特征,这种方法可以显著提升手势识别的精度[^2]。 #### 4. 模式识别 模式识别阶段通常采用机器学习算法对提取的特征进行分类。常用的分类算法包括: - **支持向量机(SVM)**:适合处理高维特征数据,并且具有较好的泛化能力[^2]。 - **人工神经网络(ANN)**:如BP神经网络,适用于复杂的非线性分类问题。 - **K近邻算法(KNN)**:简单高效,适用于小规模数据集。 #### 示例代码 以下是一个简单的MATLAB代码示例,展示如何对电信号进行预处理和特征提取: ```matlab % MATLAB代码示例:电信号预处理与特征提取 clc; clear; % 假设data为采集到的电信号 fs = 1000; % 采样频率 data = load('emg_data.mat'); % 加载电信号数据 % 带通滤波器设计 [b, a] = butter(4, [20/(fs/2), 500/(fs/2)], 'bandpass'); filtered_data = filter(b, a, data); % 计算均值绝对值(MAV) mav = mean(abs(filtered_data)); % 计算波形长度(WL) wl = sum(abs(diff(filtered_data))); disp(['均值绝对值(MAV): ', num2str(mav)]); disp(['波形长度(WL): ', num2str(wl)]); ``` #### Arduino示例代码 对于嵌入式系统的应用,以下是一个简单的Arduino代码示例,用于读取电信号并发送至串口: ```cpp // Arduino代码示例:电信号采集 void setup() { Serial.begin(115200); delay(200); } void loop() { int adc[3]; // 将电信号值保持在 0 附近 adc[0] = analogRead(A1) - 310; adc[1] = analogRead(A2) - 310; adc[2] = analogRead(A3) - 310; Serial.print(adc[0]); Serial.print(" "); Serial.print(adc[1]); Serial.print(" "); Serial.print(adc[2]); Serial.print("\n"); delay(100); // 控制采样间隔 } ``` ### 结论 电信号手势识别的实现涉及多个环节,包括信号采集、预处理、特征提取以及模式识别。通过结合时域特征、稀疏特征和机器学习算法,可以显著提高手势识别的准确性和鲁棒性[^2]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值