rag中不同 检索算法(Retrieval Algorithms)和生成模型(Generation Models)的对比

🔍 检索算法(Retrieval Algorithms)

作用: 从大量文本中找到与用户问题最相关的内容,常用于知识库问答、RAG(Retrieval-Augmented Generation)等场景。

具体包括以下几种:

  1. BAAI/LLM-Embedder

    • 🔧 原理: 把文本转换成密集向量(Dense Vector),通过计算这些向量之间的相似度(通常是余弦相似度)来找出相关文本。
    • 🎯 优化目标: 针对“基于相似度”的语义搜索任务进行了特别优化,例如用户输入一句话,模型能找到“意思接近”的回答,而不要求词完全匹配。
    • 适用场景: 语义检索、向量数据库(如FAISS、Weaviate)等。
  2. BAAI/BGE-Reranker-base

    • 🔧 原理: 是一个“重排序器”,对初步检索到的候选答案进行精确打分
    • 🎯 技术特点: 使用交叉熵损失函数(cross-entropy loss),这种训练方式能更精准地判断“哪个结果更相关”。
    • 🛠️ 作用: 在初步检索后,提升最终排序的质量。
    • 适用场景: FAQ系统、RAG中的 rerank 阶段。
  3. Sentence-Transformer (all-mpnet-base-v2)

    • 🔧 原理: 把句子编码成嵌入向量,然后计算它们之间的余弦相似度
    • 适用场景: 高效的语义搜索、匹配问答对、聚类。
  4. BM25

    • 🔧 原理: 是一种基于词频的传统检索算法,核心思想是:
      • 出现次数多的词更重要(词频 TF)
      • 出现在很多文档的词 权重 要降下来(逆文档频率 IDF)
      • 长文档会被适当“惩罚”以防过度匹配。
    • 📚 优点: 快速、无需训练、对英文等效果仍然强大。
    • 适用场景: 基于关键词的检索、传统搜索引擎、倒排索引系统。

🧠 生成模型(Generation Models)

作用: 根据用户输入生成自然语言文本,常用于问答、对话、写作助手等场景。

包括:

  1. LLaMA-2

    • 🏗️ 类型: 因果语言模型(Causal Language Model)
    • 🎯 功能: 给定一个开头,预测下一个词,直到生成完整句子。
    • 适用场景: 对话系统、代码补全、内容生成。
    • 🌍 由 Meta 发布,支持开源。
  2. Mistral-7B

    • ⚙️ 特点: 7B 参数的中小型模型,资源占用低、运行效率高
    • 适用场景: 较小算力条件下的实时应用,如本地问答、浏览器插件等。
    • 📦 支持高效推理和多线程部署。
  3. Starling-7B Alpha

    • 🧠 技术亮点: 采用 AI 反馈强化学习(RLAIF, Reinforcement Learning from AI Feedback)
    • 🎯 目标: 让模型更贴合用户意图,而不仅仅是生成“看起来对”的回答。
    • 适用场景: 用户意图识别要求高的对话系统、反馈驱动优化任务。
  4. Zephyr-7B Beta

    • 🛠️ 技术特点:
      • 实现了 蒸馏的直接偏好优化(Distilled Direct Preference Optimization, dDPO)
      • 支持通过人类反馈对模型进行指令微调(fine-tuning)
    • 🎯 目标: 让模型更好地“听指令”,比如问它“用 50 字总结下面这段话”就准确执行。
    • 适用场景: 指令式交互、自动化流程、企业智能客服。

📌 总结:

模块内容
检索算法介绍了4种不同的检索策略:基于向量的(如 BAAI/LLM-Embedder)、基于传统词频的(如 BM25)、以及精排(如 Reranker)
生成模型介绍了几种文本生成模型,重点在于不同训练技术(RLAIF、dDPO)如何提高对用户输入的理解和响应能力

如果你正在做一个 RAG 系统,这些模型可以这样组合使用:

  • 先用 LLM-Embedder + BM25 检索候选内容,
  • 再用 BGE-Reranker-base 精排提取最相关段落,
  • 最后用 LLaMA-2 或 Zephyr-7B 生成回答。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值