nest_asyncio.apply() 是一个「猴子补丁」,它让我们可以在同步环境(如普通脚本)中运行异步任务(如 LlamaParse 的异步加载函数)

nest_asyncio.apply() 是怎么工作的,以及为什么我们需要它。

💡背景知识:什么是异步任务 async?

Python 支持两种代码执行方式:

类型示例特点
同步普通函数 def func()一件事做完再做下一件
异步(async)异步函数 async def func()支持一边等待一边干别的事

比如你要读一个远程文件:

# 同步方式(卡住)
text = read_file("http://example.com")

# 异步方式(不会卡住)
text = await read_file("http://example.com")

异步执行非常适合「等待型任务」(如网络请求、文件解析、大模型调用等),像 LlamaParse 就是异步的。


🤯为什么异步代码不能直接运行?

因为异步代码需要在“事件循环”里运行。

举个例子:

import asyncio

async def say_hello():
    print("Hello")

say_hello()  # ❌ 直接调用不会执行!

# 正确方式
asyncio.run(say_hello())  # ✅ 在事件循环中运行

但问题是:

如果你已经在一个事件循环里(比如 Jupyter Notebook、某些框架),就 不能再次 asyncio.run(),否则会报错说“事件循环已存在”。


🐒 什么是猴子补丁(Monkey Patch)?

猴子补丁就是:动态地修改别人的代码行为,不改变源码。

  • nest_asyncio 就是一个“猴子补丁工具”
  • 它能 让一个事件循环套娃运行(nest)
  • 也就是说:你已经在事件循环里了,它还帮你“嵌套”再开一层循环

🧩 nest_asyncio.apply() 做了什么?

import nest_asyncio
nest_asyncio.apply()

🔧 它悄悄地修改了 asyncio 的运行机制,让你可以这样干:

# 即使你已经在一个事件循环里,也可以再次调用异步代码
asyncio.run(async_function())

或者更常见地:

loop = asyncio.get_event_loop()
result = loop.run_until_complete(async_function())

🧪 举个实际例子:没用和用了的对比

❌ 没有 nest_asyncio:

import asyncio

async def hello():
    print("Hi")

# 在 Jupyter 或某些框架中运行下面这行会报错,这是前提
asyncio.run(hello())

错误信息:

RuntimeError: asyncio.run() cannot be called from a running event loop

✅ 用了 nest_asyncio:

import asyncio
import nest_asyncio
nest_asyncio.apply()

async def hello():
    print("Hi")

asyncio.run(hello())  # 现在就不会报错了

🧠 这段代码

import nest_asyncio
nest_asyncio.apply()
file_extractor = llama_parse_extractor()

✅ 作用是:

你使用的 LlamaParse 是一个异步的文件解析器,正常应该 await llama_parse.load(),但写的代码是同步方式运行的脚本,不能直接 await。

所以通过:

nest_asyncio.apply()

你可以在同步的脚本中间,放心大胆地运行 LlamaParse,哪怕它本身是异步的。


🔚 总结一句话:

nest_asyncio.apply() 是一个让「本来只能在异步函数中运行的代码」也能在普通脚本或 Jupyter 中运行的小工具。它让你不用改很多结构,也能用上异步功能,尤其适合用异步解析器如 LlamaParse 的场景。

同步 vs 异步 + nest_asyncio 的对比 demo

  1. 👉 原生异步函数写法
  2. 在同步环境中错误调用的写法
  3. 使用 nest_asyncio 成功运行异步任务的写法

✅ 场景说明

我们写一个简单的异步函数 async def fetch_data(),模拟从服务器获取数据(用 asyncio.sleep() 模拟等待),然后对比几种调用方式。


🧪 示例代码

你可以直接复制粘贴运行在一个 Python 脚本里试试:

import asyncio
import nest_asyncio

# 模拟一个异步函数(比如解析文档或访问API)
async def fetch_data():
    print("Start fetching...")
    await asyncio.sleep(2)  # 模拟耗时操作
    print("Data fetched!")
    return {"status": "success", "data": [1, 2, 3]}

① ✅ 正确的异步调用方式(在 async 函数里)

# 正确用法:写一个 async 函数,内部使用 await 调用另一个 async 函数
async def main():
    result = await fetch_data()
    print("Result:", result)

# 启动事件循环来运行 main
asyncio.run(main())

运行效果:

Start fetching...
(等待2秒)
Data fetched!
Result: {'status': 'success', 'data': [1, 2, 3]}

② ❌ 同步环境中直接运行异步函数(会报错)

# 直接调用 async 函数,不在 async 环境中
result = asyncio.run(fetch_data())  # 这在 Jupyter Notebook 或嵌套调用时可能会报错,这是前提

错误(示例):

RuntimeError: asyncio.run() cannot be called from a running event loop

③ ✅ 用 nest_asyncio 让同步环境支持 async 调用

import nest_asyncio
nest_asyncio.apply()

# 模拟你在 Jupyter 或某些框架下想在同步脚本中调用异步函数

loop = asyncio.get_event_loop()  # 获取当前事件循环
result = loop.run_until_complete(fetch_data())  # 运行异步函数
print("Result:", result)

输出:

Start fetching...
(等待2秒)
Data fetched!
Result: {'status': 'success', 'data': [1, 2, 3]}

🎯 小结对比

方式场景是否能运行用例
asyncio.run(fetch_data())在主程序中✅(除非你已经在事件循环中)脚本
loop.run_until_complete(...)嵌套事件循环或脚本❌(不加补丁会出错)框架、Jupyter
nest_asyncio + loop.run_until_complete(...)嵌套事件循环中✅ 推荐用!Jupyter、同步函数中使用异步

🚀 和 LlamaParse 结合

import nest_asyncio
nest_asyncio.apply()

# llama_parse = LlamaParse(...) 是 async 的
# 所以可以这样用:
loop = asyncio.get_event_loop()
result = loop.run_until_complete(parser.load_data_async())
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值