堆与堆排序

1 大根堆与小根堆

1.1 介绍

  1. 大根堆与小根堆必须是完全二叉树
  2. 大根堆的父节点永远比子节点大或相等
  3. 小根堆的父节点永远比子节点小或相等

本文皆以大根堆为例

1.2 PUSH

  1. 尾部增加元素
  2. 调整为大根堆:与父节点比对,若大于父节点则交换位置,直到小于等于父节点或没有父节点时停止
void push(int value) {
    if (isFull()) throw new RuntimeException("heap is full");
    heap[heapSize] = value;
    heapInsert(heap,heapSize++); // 插入一个元素后调整为大根堆
}

void heapInsert(int[] arr, int i) {
    while (arr[i] > arr[(i - 1) / 2]) {
        swap(arr, i, (i - 1) / 2);
        i = (i - 1) / 2;// (0-1)/2 == 0
    }
}

时间复杂度:O(logN) 空间复杂度:O(1)

1.3 POP

  1. 根节点与尾节点交换,删除尾节点
  2. 调整为大根堆:根节点与子节点比较,与比他大的最大子节点交换,直到无子节点比父子节点大,或孩子不存在时结束
int pop() {
    if (isEmpty()) throw new RuntimeException("heap is empty");
    swap(heap, 0, --heapSize); // 头尾交换,并删除
    heapify(heap, 0, heapSize); // 删除一个元素后,调整为大根堆
    return heap[heapSize];
}

void heapify(int[] arr, int index, int heapSize) {
    // 左右孩子pk,赢的和父节点交换
    // 直到不存在左右孩子,或左右孩子都比我小
    int left = index * 2 + 1;
    while (left < heapSize) {
        int win = arr[left+1] > arr[left] && left + 1 < heapSize ? left+1 : left;
        if (arr[win] <= arr[index]) {
            break; // 儿子都比父亲小
        }
        swap(arr, win, index);
        index = win;
        left = index * 2 + 1;
    }
}

时间复杂度:O(logN) 空间复杂度:O(1)

2 堆排序

2.1 标准堆排序

从上往下建堆

void heapSort(int[] arr) {
    for (int i = 1; i < arr.length; i++) { // O(N)
        heapInsert(arr, i); // O(logN)
    }
    int heapSize = arr.length;
    while (heapSize > 0) { // O(N)
        heapify(arr, 0, heapSize); // O(logN)
        swap(arr, 0, --heapSize); // O(1)
    }
}

时间复杂度:O(NlogN),空间复杂度:O(1)

2.2 改进版堆排序

从下往上建堆

void heapSort(int[] arr) {
    int heapSize = arr.length;
    for (int i = arr.length; i > 0; i--) {
        heapify(arr, i, heapSize); 
    }
    while (heapSize > 0) { // O(N)
        heapify(arr, 0, heapSize); // O(logN)
        swap(arr, 0, --heapSize); // O(1)
    }
}

时间复杂度:O(NlogN),空间复杂度:O(1)

2.3 总结

改进版与标准版同为O(NlogN),到底快在哪儿?快在建堆

  1. 标准版是从上往下建堆,O(NlogN)
    1. 第1层,1个节点,操作1次(看自己一眼,没法往上升)
    2. 第2层,2个节点,操作2次 (看自己一眼,上升1次)
    3. 第n-2层,2^(n-3)个节点,操作n-2次(看自己一眼,上升n-3次)
    4. 第n-1层,2^(n-2)个节点,操作n-1次(看自己一眼,上升n-2次)
    5. 第n层,2^(n-1)个节点,操作n次(看自己一眼,上升n-1次)
  2. 改进版是从下往上建堆,O(N)
    1. 第1层,1个节点,操作n次(看自己一眼,下沉n-1次)
    2. 第2层,2个节点,操作n-1次 (看自己一眼,下沉n-2次)
    3. 第n-2层,2^(n-3)个节点,操作3次(看自己一眼,下沉2次)
    4. 第n-1层,2^(n-2)个节点,操作2次(看自己一眼,下沉1次)
    5. 第n层,2^(n-1)个节点,操作1次(看自己一眼,没子节点,没法沉)

堆其实就是个完全二叉树,那么最底层元素通常占了一半,于是越底层的交换成本越高,则整体建堆成本越高

3 相对有序的数组,移动元素个数不超过K

例:[2, 3, 1, 4, 6, 5, 9, 7, 8],移动不超过3

  1. 先搞一个k+1的小根堆,将k+1个元素push进去
  2. 当数组还有元素时,每pop一个就往里push一个
  3. 直到小根堆pop空
void sortedArrDistanceLessK(int[] arr, int k) {
    if (k == 0) {
        return;
    }
    PriorityQueue<Integer> heap = new PriorityQueue<>(); // 默认为小根堆
    int index = 0;
    for (; index <= Math.min(arr.length - 1, k); index++) {
        heap.add(arr[index]);
    }
    int i = 0;
    for (; index < arr.length; i++, index++) {
        arr[i] = heap.poll();
        heap.add(arr[index]);
    }
    while (!heap.isEmpty()) {
        arr[i++] = heap.poll();
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值