1 大根堆与小根堆
1.1 介绍
- 大根堆与小根堆必须是完全二叉树
- 大根堆的父节点永远比子节点大或相等
- 小根堆的父节点永远比子节点小或相等
本文皆以大根堆为例
1.2 PUSH
- 尾部增加元素
- 调整为大根堆:与父节点比对,若大于父节点则交换位置,直到小于等于父节点或没有父节点时停止
void push(int value) {
if (isFull()) throw new RuntimeException("heap is full");
heap[heapSize] = value;
heapInsert(heap,heapSize++); // 插入一个元素后调整为大根堆
}
void heapInsert(int[] arr, int i) {
while (arr[i] > arr[(i - 1) / 2]) {
swap(arr, i, (i - 1) / 2);
i = (i - 1) / 2;// (0-1)/2 == 0
}
}
时间复杂度:O(logN) 空间复杂度:O(1)
1.3 POP
- 根节点与尾节点交换,删除尾节点
- 调整为大根堆:根节点与子节点比较,与比他大的最大子节点交换,直到无子节点比父子节点大,或孩子不存在时结束
int pop() {
if (isEmpty()) throw new RuntimeException("heap is empty");
swap(heap, 0, --heapSize); // 头尾交换,并删除
heapify(heap, 0, heapSize); // 删除一个元素后,调整为大根堆
return heap[heapSize];
}
void heapify(int[] arr, int index, int heapSize) {
// 左右孩子pk,赢的和父节点交换
// 直到不存在左右孩子,或左右孩子都比我小
int left = index * 2 + 1;
while (left < heapSize) {
int win = arr[left+1] > arr[left] && left + 1 < heapSize ? left+1 : left;
if (arr[win] <= arr[index]) {
break; // 儿子都比父亲小
}
swap(arr, win, index);
index = win;
left = index * 2 + 1;
}
}
时间复杂度:O(logN) 空间复杂度:O(1)
2 堆排序
2.1 标准堆排序
从上往下建堆
void heapSort(int[] arr) {
for (int i = 1; i < arr.length; i++) { // O(N)
heapInsert(arr, i); // O(logN)
}
int heapSize = arr.length;
while (heapSize > 0) { // O(N)
heapify(arr, 0, heapSize); // O(logN)
swap(arr, 0, --heapSize); // O(1)
}
}
时间复杂度:O(NlogN),空间复杂度:O(1)
2.2 改进版堆排序
从下往上建堆
void heapSort(int[] arr) {
int heapSize = arr.length;
for (int i = arr.length; i > 0; i--) {
heapify(arr, i, heapSize);
}
while (heapSize > 0) { // O(N)
heapify(arr, 0, heapSize); // O(logN)
swap(arr, 0, --heapSize); // O(1)
}
}
时间复杂度:O(NlogN),空间复杂度:O(1)
2.3 总结
改进版与标准版同为O(NlogN),到底快在哪儿?快在建堆
- 标准版是从上往下建堆,O(NlogN)
- 第1层,1个节点,操作1次(看自己一眼,没法往上升)
- 第2层,2个节点,操作2次 (看自己一眼,上升1次)
- …
- 第n-2层,2^(n-3)个节点,操作n-2次(看自己一眼,上升n-3次)
- 第n-1层,2^(n-2)个节点,操作n-1次(看自己一眼,上升n-2次)
- 第n层,2^(n-1)个节点,操作n次(看自己一眼,上升n-1次)
- 改进版是从下往上建堆,O(N)
- 第1层,1个节点,操作n次(看自己一眼,下沉n-1次)
- 第2层,2个节点,操作n-1次 (看自己一眼,下沉n-2次)
- …
- 第n-2层,2^(n-3)个节点,操作3次(看自己一眼,下沉2次)
- 第n-1层,2^(n-2)个节点,操作2次(看自己一眼,下沉1次)
- 第n层,2^(n-1)个节点,操作1次(看自己一眼,没子节点,没法沉)
堆其实就是个完全二叉树,那么最底层元素通常占了一半,于是越底层的交换成本越高,则整体建堆成本越高
3 相对有序的数组,移动元素个数不超过K
例:[2, 3, 1, 4, 6, 5, 9, 7, 8],移动不超过3
解
- 先搞一个k+1的小根堆,将k+1个元素push进去
- 当数组还有元素时,每pop一个就往里push一个
- 直到小根堆pop空
void sortedArrDistanceLessK(int[] arr, int k) {
if (k == 0) {
return;
}
PriorityQueue<Integer> heap = new PriorityQueue<>(); // 默认为小根堆
int index = 0;
for (; index <= Math.min(arr.length - 1, k); index++) {
heap.add(arr[index]);
}
int i = 0;
for (; index < arr.length; i++, index++) {
arr[i] = heap.poll();
heap.add(arr[index]);
}
while (!heap.isEmpty()) {
arr[i++] = heap.poll();
}
}