利用联合学习构建去中心化图像分类器

1、原文

Building Decentralized Image Classifiers with Federated Learning

https://ieeexplore.ieee.org/document/9230771  

2、摘要

数据隐私问题极大地限制了神经网络的商业使用。只要私人数据的积累和使用被认为是将神经网络集成到产品中的必要条件,消费者将不愿意使用或允许访问任何深度学习集成产品,生产商也将同样不愿意利用深度学习来提高性能。联邦学习最初是在谷歌2016年发表的一篇题为《从去中心化数据中高效学习深度网络的通信》的论文中提出的,作为解决这一难题的一种方法。在这项研究中,我们研究了分散式图像分类器与集中式图像分类器的性能如何比较。将跨十个设备训练的图像分类器的性能与使用相同架构构建但在一个训练数据集上集中训练的模型进行了比较。结果表明,分散模型在准确性、精确度和召回率方面与集中训练的分类器相比非常好。

3、正文

--------------------------------------------------------------------

----------------------------------------------------------

------------------------------------------------------------------

----------------------------------------------------------------

4、结论

联邦学习是一种可行的替代方案构建预测模型的传统方法来自一个集中的数据语料库。本地培训权重可用于替换用户数据本地训练的权重,而不是训练数据设备是比传统的更安全的替代品集中式模型。大规模联合学习有可能平息数据隐私问题并导致普及使用神经网络在产品性能改进和个性化。通过联邦学习确保数据隐私,神经网络可以扩展充分发挥其商业潜力。在测试时优于集中式模型零数据收获,庞大的手机网络和海量数据变得完全可访问到联邦学习。可以获得更大的金额比中央语料库提供的数据多,联邦学习有潜力建立很多比使用构建的模型性能更好传统的集中式方法。综上所述,分散模型提供相同的性能同时确保数据隐私并减少要求专用计算资源,从而使强有力的案例成为深度学习的未来。

5、参考文献

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值