http://acm.hdu.edu.cn/showproblem.php?pid=5288
Problem Description
OO has got a array A of size n ,defined a function f(l,r) represent the number of i (l<=i<=r) , that there's no j(l<=j<=r,j<>i) satisfy a
i mod a
j=0,now OO want to know
∑i=1n∑j=inf(i,j) mod (109+7).
Input
There are multiple test cases. Please process till EOF.
In each test case:
First line: an integer n(n<=10^5) indicating the size of array
Second line:contain n numbers a i(0<a i<=10000)
In each test case:
First line: an integer n(n<=10^5) indicating the size of array
Second line:contain n numbers a i(0<a i<=10000)
Output
For each tests: ouput a line contain a number ans.
Sample Input
5 1 2 3 4 5
Sample Output
23
/**
hdu 5288||2015多校联合第一场1001题
题目大意:给定一个区间,找出f(i,j)的和
解题思路:http://blog.sina.com.cn/s/blog_15139f1a10102vnx5.html 和官方题解想的一样
*/
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
using namespace std;
typedef __int64 LL;
const int MAXN = 1e5+10;
const LL MOD = 1e9+7;
int a[MAXN],l,r,n;
vector<int> f[10010];
vector<int> vec[10010];
typedef vector<int>::iterator it;
int main()
{
for(int i=1; i<=10000; i++)
for(int j=1; j*i<=10000; j++)
f[i*j].push_back(i);
while(~scanf("%d",&n))
{
for(int i=0; i<=10000; i++)
vec[i].clear();
for(int i=1; i<=n; i++)
{
scanf("%d",&a[i]);
vec[a[i]].push_back(i);
}
LL ans=0;
for(int i=1; i<=n; i++)
{
l=1,r=n;
for(it j=f[a[i]].begin(); j!=f[a[i]].end(); j++)
{
if(vec[*j].empty())continue;
it t=lower_bound(vec[*j].begin(),vec[*j].end(),i);
if(t==vec[*j].end())
{
t--;
l=max((*t)+1,l);
continue;
}
if(*t==i)
{
if(t!=vec[*j].begin())
{
t--;
l=max((*t)+1,l);
t++;
}
if(*t==i)t++;
if(t!=vec[*j].end())
r=min((*t)-1,r);
}
else
{
r=min((*t)-1,r);
if(t!=vec[*j].begin())
{
t--;
l=max((*t)+1,l);
}
}
}
ans = (ans + ((long long)(i - l+1) * (r - i+1) % MOD) ) % MOD;
}
printf("%I64d\n",ans);
}
return 0;
}