题目大意:
给你n个点
(xi,yi)
(
x
i
,
y
i
)
, 每个点有一个出现的概率
aibi
a
i
b
i
, 求(x,y)满足至少有一个i, 使得
0<x≤xi,0<y≤yi
0
<
x
≤
x
i
,
0
<
y
≤
y
i
的期望个数。
(n≤105,∑n≤106,1≤xi,yi≤109,1≤ai≤bi≤109)
(
n
≤
10
5
,
∑
n
≤
10
6
,
1
≤
x
i
,
y
i
≤
10
9
,
1
≤
a
i
≤
b
i
≤
10
9
)
题目思路:
单独考虑每个点的贡献, 某个点产生的期望是 1 - 所有在它右上方的点均没有出现的概率。 可以离散化后, 用线段树+扫描线解决。 线段树维护一段区间的后缀乘积的和,线段树维护y坐标, 将点按x坐标排序, 扫描线根据x坐标一段一段的算贡献。
PS:
有几个要注意的细节, 一个是离散化时记得把边界加进去, 一个是注意
ai==bi
a
i
==
b
i
的特殊点。
Code:
#include <map>
#include <set>
#include <map>
#include <bitset>
#include <cmath>
#include <queue>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define ll long long
#define db double
#define fi first
#define se second
#define mp(x, y) make_pair(x, y)
#define ls (x << 1)
#define rs ((x << 1) | 1)
#define mid ((l + r) >> 1)
using namespace std;
const int N = (int)1e5 + 10;
const int mo = (int)1e9 + 7;
ll pw(ll x, ll k){
ll ret = 1;
while (k){
if (k & 1) ret = ret * x % mo;
x = x * x % mo;
k >>= 1;
}
return ret;
}
ll ine(ll x){
return pw(x, mo - 2);
}
int n, m, c[N], x[N], y[N], a[N], b[N], id[N];
ll sum[N << 2], pro[N << 2], val[N << 2]; int sz[N << 2];
void update(int x, int l, int r){
sum[x] = (sum[rs] + sum[ls] * pro[rs] % mo + (c[mid + 1] - c[mid] - 1) * pro[rs] % mo) % mo;
pro[x] = pro[ls] * pro[rs] % mo;
}
void build(int x, int l, int r){
if (l == r) {sum[x] = 1; pro[x] = 1; val[x] = 1; sz[x] = 0; return;}
build(ls, l, mid);
build(rs, mid + 1, r);
update(x, l, r);
}
void modf(int x, int l, int r, int pos, int _a, int _b){
if (l == r){
val[x] = val[x] * _a % mo * ine(_b) % mo;
if (sz[x] == 0) sum[x] = pro[x] = val[x];
return ;
}
if (pos <= mid) modf(ls, l, mid, pos, _a, _b);
else modf(rs, mid + 1, r, pos, _a, _b);
update(x, l, r);
}
void s_modf(int x, int l, int r, int pos, int v){
if (l == r){
sz[x] += v;
if (sz[x]) sum[x] = pro[x] = 0;
else sum[x] = pro[x] = val[x];
return ;
}
if (pos <= mid) s_modf(ls, l, mid, pos, v);
else s_modf(rs, mid + 1, r, pos, v);
update(x, l, r);
}
bool cmp(int i, int j){
return x[i] < x[j];
}
int main(){
int T; scanf("%d", &T);
while (T --){
scanf("%d", &n); m = 0;
for (int i = 1; i <= n; i ++){
scanf("%d %d %d %d", x + i, y + i, a + i, b + i);
a[i] = b[i] - a[i]; c[++ m] = y[i];
}
c[++ m] = 1;
sort(c + 1, c + m + 1);
m = unique(c + 1, c + m + 1) - c - 1;
build(1, 1, m);
for (int i = 1; i <= n; i ++){
if (a[i] != 0) modf(1, 1, m, lower_bound(c + 1, c + m + 1, y[i]) - c, a[i], b[i]);
else s_modf(1, 1, m, lower_bound(c + 1, c + m + 1, y[i]) - c, 1);
}
ll ans = 0;
for (int i = 1; i <= n; i ++) id[i] = i;
sort(id + 1, id + n + 1, cmp);
for (int j = 1; j <= n; j ++){
int i = id[j];
ans = (ans + (c[m] - sum[1]) * (x[id[j]] - x[id[j - 1]]) % mo) % mo;
if (a[i] != 0) modf(1, 1, m, lower_bound(c + 1, c + m + 1, y[i]) - c, b[i], a[i]);
else s_modf(1, 1, m, lower_bound(c + 1, c + m + 1, y[i]) - c, -1);
}
if (ans < 0) ans += mo;
printf("%lld\n", ans);
}
return 0;
}