/*题目链接*/
题意:有一个由正整数组成的三角形,如下:
1
2 3
4 5 6
7 8 9 10
.....
从第一行开始向下走,每次只能向左下或者右下走一格,例如当前在5,下一步只能走到8或9。问如何走,使得结果的个位数最大,输出最大值。
题目分析:这题和经典的数塔问题很像,唯一的区别就是答案不是和最大而是个位数最大。如果我们延用F[i][j]表示(i,j)作为根能取到的最大个位数值,这种表示方法是不具有最优化性质的,也就是子问题的最优解推不出父问题的最优解。换一个角度思考,虽然我没法写出最大值之间的转移方程,但是我们可以知道以(i,j)为根能取到哪些个位数值。所以用F[i][j][0...9]表示状态,F的取值只有0或者1,表示能否取到。
这样最后的状态转移方程就是
最后输出F[0][0][X]=True中最大的X就行。
AC代码:
<pre name="code" class="cpp">#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
using namespace std;
int a[505][505] ,n;
bool f[505][505][10];
int main()
{
int test;
scanf("%d",&test);
while (test--)
{
memset(f,0,sizeof(f));
scanf("%d",&n);
for (int i=0; i!=n; ++i)
for (int j=0; j<=i; ++j)
scanf("%d",&a[i][j]);
for (int i=0; i<=n-1; ++i)
f[n-1][i][a[n-1][i]%10] = true;
for (int i=n-2; i>=0; --i)
for (int j=0; j<=i; ++j)
for (int k=0; k<=9; ++k)
f[i][j][k] = f[i+1][j][(k-a[i][j]%10+10)%10] || f[i+1][j+1][(k-a[i][j]%10+10)%10];
for (int i=9; i>=0; --i)
if (f[0][0][i])
{
printf("%d\n",i);
break;
}
}
return 0;
}