深度学习基础
深度学习自学基础相关记录
小枫小疯
哈尔滨工业大学体验生
展开
-
深度学习概念2021-09-27 Epoch
神经网络的训练梯度下降法学习率: 步长更大= 学习率更高误差函数不断减小。如果训练数据过多, 无法一次性将所有数据送入计算。现将数据分成几个部分: batch分多个 batch , 逐一送入计算训练Epoch一个epoch , 表示: 所有的数据送入网络中, 完成了一次前向计算 + 反向传播的过程。由于一个epoch 常常太大, 分成 几个小的 baches .将所有数据迭代训练一次是不够的, 需要反复多次才能拟合、收敛。在实际训练时、 将所有数据分成多个batch..转载 2021-09-27 16:06:47 · 411 阅读 · 0 评论 -
深度学习基础 2D卷积(1)
以pytorch为例子,2D卷积在设置的时候具有以下参数,具有输入通道的多少(这个决定了卷积核的通道数量),滤波器数量,这个是有多少个滤波器,越多提取的特征就越有用,kernel_size,这个是卷积核的大小,相当于一个观测器的大小,越大参数越大其实是越强。原创 2023-10-05 19:43:18 · 756 阅读 · 0 评论 -
深度学习基础之GFLOPS(2)
神经网络的GFLOPS(Giga FLoating-Point Operations Per Second)代表了神经网络模型执行计算的速度和计算能力。想象你有两个数学家,他们都能够解决复杂的数学问题,但一个速度非常快,另一个速度较慢。GFLOPS就像用来衡量他们速度的标尺。数学家A的GFLOPS是10,这意味着他每秒钟可以解决10亿个数学问题。数学家B的GFLOPS是100,这意味着他每秒钟可以解决100亿个数学问题,比数学家A更快。原创 2023-10-05 22:48:34 · 6331 阅读 · 0 评论 -
深度学习基础之参数量(3)
【代码】深度学习基础之参数量(3)原创 2023-10-06 01:24:55 · 1179 阅读 · 0 评论