题目地址(334. 递增的三元子序列)

此篇博客讲解如何使用Java实现LeetCode上关于查找整数数组中是否存在递增三元子序列的问题。通过模拟栈的方法,作者提供了一个O(n)时间复杂度和O(1)空间复杂度的解决方案,适合理解栈在算法中的应用。
摘要由CSDN通过智能技术生成

题目地址(334. 递增的三元子序列)

https://leetcode.cn/problems/increasing-triplet-subsequence/

题目描述

给你一个整数数组 nums ,判断这个数组中是否存在长度为 3 的递增子序列。

如果存在这样的三元组下标 (i, j, k) 且满足 i < j < k ,使得 nums[i] < nums[j] < nums[k] ,返回 true ;否则,返回 false 。

 

示例 1:

输入:nums = [1,2,3,4,5]
输出:true
解释:任何 i < j < k 的三元组都满足题意


示例 2:

输入:nums = [5,4,3,2,1]
输出:false
解释:不存在满足题意的三元组

示例 3:

输入:nums = [2,1,5,0,4,6]
输出:true
解释:三元组 (3, 4, 5) 满足题意,因为 nums[3] == 0 < nums[4] == 4 < nums[5] == 6


 

提示:

1 <= nums.length <= 5 * 105
-231 <= nums[i] <= 231 - 1

 

进阶:你能实现时间复杂度为 O(n) ,空间复杂度为 O(1) 的解决方案吗?

关键点

  • 模拟栈

代码

  • 语言支持:Java

Java Code:


class Solution {
    public boolean increasingTriplet(int[] nums) {
        //模拟栈。因为存在 三个数 即可,写死前两个最小
        int min1 = Integer.MAX_VALUE;
        int min2 = Integer.MAX_VALUE;
        for(int item : nums){
            if(item <= min1){
                min1 = item;
            }else if(item <= min2){
                min2 = item;
            }else{ // 连续大于前 2 个 因此成立
                return true;
            }
        }
        return false;
    }
}

复杂度分析

令 n 为数组长度。

  • 时间复杂度: O ( n ) O(n) O(n)
  • 空间复杂度: O ( n ) O(n) O(n)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值