Given a non negative integer number num. For every numbers i in the range 0 ≤ i ≤ num calculate the number of 1's in their binary representation and return them as an array.
Example:
For num = 5
you should return [0,1,1,2,1,2]
.
Follow up:
- It is very easy to come up with a solution with run time O(n*sizeof(integer)). But can you do it in linear time O(n) /possibly in a single pass?
- Space complexity should be O(n).
题解题意:
对于一个从0到num的数,找出它对应的二进制中包含多少个1,将每个数对应的包含多少个1的结果以数组的形式返回出来。
求一个数x的二进制:
首先需要一个余数r,然后还需要用x来继续接收x/2的商,直到x==0时循环结束。
故我们需要对x进行一个操作,可以注意到只是求x中包含有多少个1的操作只是判断当r=1时进行count++即可,所以第一种代码如下:
#include <stdio.h>
#include <stdlib.h>
//传入一个num,和一个returnize,其中(*returnSize)用于记录数组的长度
int* countBits(int num, int* returnSize)
{
int i=0;
*returnSize=num+1;
//动态分配Size数组的长度
int * Size = (int *)malloc(sizeof(int)*(num+1));
//将Size数组全部置为0(数组名,值,字节数)
memset(Size,0,sizeof(int)*(num+1));
for(i=0;i<=num;i++)
{
int n = i;
while(n !=0)
{
int r = n%2;
n = (int)n/2;
if(r == 1)
Size[i]++;
}
printf("%d\n",Size[i]);
}
return Size;
}
int main()
{
int num = 10;
//为returnSize分配内存
int *returnSize = (int *)malloc(sizeof(int));
int * a= countBits(num, returnSize);
return 0;
}
上述代码实现的是复杂度为o(n*二进制长度),如果实现复杂度为o(n),就要继续考虑二进制的特性。我们知道,对于二进制而言,左移相当于十进制中的乘2,对于4:100,而8则是1000,对于16则是10000,可以看出对于2n而言,它包含的二进制中1的个数和n的二进制中1 的个数是相同的。而对于3:011,和7:111,可以看出是011左移一位然后加1组成的,所以,对于2n+1而言,它的二进制中包含的1的个数应该是n的个数再加1,因此我们可以得到这样一个递推公式:S[i] = S[i/2]+(i%2 != 0);其中S[0] = 0;用这样的思路实现的代码为:
//传入一个num,和一个returnize,其中(*returnSize)用于记录数组的长度
int* countBits(int num, int* returnSize)
{
int i=0;
*returnSize=num+1;
//动态分配Size数组的长度
int * Size = (int *)malloc(sizeof(int)*(num+1));
//将Size数组全部置为0(数组名,值,字节数)
memset(Size,0,sizeof(int)*(num+1));
for(i=0;i<=num;i++)
{
Size[i] = Size[i/2] + (i%2 != 0);
printf("%d\n",Size[i]);
}
return Size;
}
这样做的复杂度即为o(n)