tensorflow
文章平均质量分 76
lgy_keira
这个作者很懒,什么都没留下…
展开
-
tensorflow(3) tf.estimator
标签(空格分隔): tensorflowtf.estimator 是tensorflow的一个高级的机器学习的API,使训练,evaluation 多种机器学习的模型更简单。 本文利用tf.estimator写一个深度神经网络分类器,分为以下几个步骤 1、数据预处理,讲CSV文件load进tensorflow Dataset 2、构建神经网络分类器 3、训练网络 4、evaluate 5原创 2017-09-18 15:41:16 · 2392 阅读 · 0 评论 -
C3D-tensorflow(1)
tensorflow项目的文件大致包含以下文件: - 数据预处理文件夹 list - 训练网络 train_c3d_ucf101.py - 测试网络 predict_c3d_ucf101.py - 输入数据input_data.py - 网络模型c3d_model.py一般里面为脚本文件,讲视频变成帧,提取训练测试视频的list数据预处理1、讲视频转化为图片帧 每个视频的名称变成一个原创 2017-09-08 17:37:16 · 2046 阅读 · 0 评论 -
tensorflow学习(2)TensorFlow Mechanics 101
标签(空格分隔): tensorflow参考 TF英文社区和TF中文社区mnist.py中定义了四个函数,inference,training,loss,evaluation fully_connected_feed.py 是总体的运行过程mnist.pyinference就是网络结构函数,mnist.py中的inference定义的网络有一对全连接层,和一个有10个线性节点的线性层input:原创 2017-09-15 09:25:44 · 427 阅读 · 0 评论 -
tensorflow(4) 在tf.estimator中建立input函数
标签(空格分隔): tensorflow上一篇我们看了使用tf.estimator直接构建一个DNN分类器,但是数据load进来之后,输入分类器之前,还要经过一个input_fn的函数。 这篇文章会教你怎么用input_fn来喂给一个神经网络回归器数据。1.把feature data转换为tensor如果你的feature/label数据是python array ,或者存在pandas data原创 2017-09-19 16:44:17 · 6483 阅读 · 0 评论 -
tensorflow(1) mnist_softmax.py
视觉导航中的运动和姿态估计标签(空格分隔): PaperReading8.1 2D Motion Estimation -Optical Flow光流定义 光流被定义为两图像之间的亮度图案(brightness pattens)的二维运动。 该定义仅表示图像平面中的强度的运动,但不表示物体在场景中的3D运动.光流作用 光流提供了关于场景的重要信息,并且用作几个任务的输入,例如自我运动估计(原创 2017-07-04 12:30:55 · 455 阅读 · 0 评论 -
tensorflow(5) Tensorboard可视化
标签(空格分隔): tensorflow1.serializing the datatensorboard的工作原理是通过读入tensorflow event file,这个文件里面存的是summary Data。 summary data 是从graph里面收集而来的,找到你想收集summary data的节点,在这个节点上添加tf.summary.scalar op,然后给scalar_sum原创 2017-10-20 11:05:52 · 657 阅读 · 0 评论 -
tensorflow(6) mnist.train.next_batch()函数解析
之前一直用keras,用keras的fit_generator需要写一个无限循环的生成器(while True, yield X,y),然而tensorflow的feed_dict原理不一样,它需要的只是一个batch的数据而已。那么如何保证每一次调用next还能记住上一次的位置呢?第一个想到的是全局变量。tensorflow源码是将dataset输入写为一个类,self._index_in_epo原创 2017-12-07 23:01:32 · 50442 阅读 · 5 评论 -
tensorflow multi gpu
模型复制、batch拆分把模型往每个GPU上拷贝一份,然后把数据平均分配到GPU 等所有GPU处理完一批数据,然后同时更新所有的参数 往GPU上拷数据是非常耗时的,所以我们再CPU上存储、更新所有的参数 梯度都是再GPU上计算的,平均、更新 、在CPU上 模型参数更新为 所有模型副本的平均梯度变量共享将变量和操作放在模型上 计算单一模型的inference和gradients...原创 2018-09-06 09:44:53 · 552 阅读 · 0 评论 -
tensorflow queue
tf官网解释链接 queue被实现为计算图中的节点,一个节点就像variable一样。 enqueue:入队,提前从硬盘读取数据 dequeue:出队,从队列中取一个mini_batch出来送进计算节点 主要有两个步骤 1.Multiple threads prepare training examples and enqueue them. 2.A training thread e...原创 2018-09-06 19:33:27 · 359 阅读 · 0 评论