算法基础
文章平均质量分 50
lgy_keira
这个作者很懒,什么都没留下…
展开
-
k-d树与特征匹配
特征匹配算子大致可以分为两类。一类是线性扫描法即将数据集中的点与查询点逐一进行距离比较,也就是穷举,缺点很明显,就是没有利用数据集本身蕴含的任何结构信息,搜索效率较低,第二类是建立数据索引,然后再进行快速匹配。因为实际数据一般都会呈现出簇状的聚类形态,通过设计有效的索引结构可以大大加快检索的速度。索引树属于第二类,其基本思想就是对搜索空间进行层次划分。 根据划分的空间是否有混叠可以分为Clippi原创 2017-02-28 13:49:06 · 1894 阅读 · 0 评论 -
LSTMCell内部原理及tensorflow实现
内部结构 公式输入门,以及内部状态更新 输出门,以及输出output =ht 输出state LSTM cell 代码在时间步上的循环原创 2018-08-30 10:54:56 · 876 阅读 · 0 评论 -
RPN和ROI pooling的理解
关于ROI pooling 比较简单,详情参考 ROI pooling V.S. SSP Pooling ROI是只有一层的SSP Pooling:ROI Pooling将proposal在feature map上的对应区域分为W * H 份,每一份取Max/Avg 将其放到固定位置 SSP Pooling是将proposal分为(4 * 4 / 2 * 2 / 1 * 1份,然后进行拼接...原创 2018-09-03 17:14:11 · 2666 阅读 · 0 评论 -
损失函数
交叉熵损失函数多分类的情况,来源原创 2018-09-09 12:26:53 · 154 阅读 · 0 评论 -
[keras+tensorflow]常用网络模型代码/前几层的取用
keras+VGG19原创 2018-09-09 14:23:38 · 1555 阅读 · 0 评论 -
2d-3d坐标转换
对于常规相机,SLAM里使用针孔相机模型 简而言之,一个空间点[x,y,z]和它在图像中的像素坐标[u,v,d] (d指深度数据) 的对应关系是这样的:u=x⋅fxz+cx,u=x⋅f_xz+cx,u=x⋅fxz+cx,v=y⋅fyz+cy,v=y⋅f_yz+cy,v=y⋅fyz+cy,d=z⋅s,d=z⋅s,d=z⋅s,其中,fx,fy指相机在x,y两个轴上的焦距,cx,cy指...原创 2018-10-04 20:35:59 · 5924 阅读 · 1 评论 -
线性,仿射,透视 变换
平面变换包括 线性变换,仿射变换线性变换线性变换包括 旋转,镜像(翻转),伸缩(缩放),推移(错切)仿射变换仿射变换 = 线性变换 + 平移仿射变换是一种二维坐标到二维坐标之间的线性变换,它保持了二维图形的“平直性”(直线经过变换之后依然是直线)和“平行性”(二维图形之间的相对位置关系保持不变,平行线依然是平行线,且直线上点的位置顺序不变)。任意的仿射变换都能表示为乘以一个矩阵(线性变换...原创 2018-10-17 10:10:20 · 856 阅读 · 0 评论