HDU 1231 最大连续子序列

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1231

最大连续子序列

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 20590    Accepted Submission(s): 9123


Problem Description
给定K个整数的序列{ N1, N2, ..., NK },其任意连续子序列可表示为{ Ni, Ni+1, ...,
Nj },其中 1 <= i <= j <= K。最大连续子序列是所有连续子序列中元素和最大的一个,
例如给定序列{ -2, 11, -4, 13, -5, -2 },其最大连续子序列为{ 11, -4, 13 },最大和
为20。
在今年的数据结构考卷中,要求编写程序得到最大和,现在增加一个要求,即还需要输出该
子序列的第一个和最后一个元素。
 

Input
测试输入包含若干测试用例,每个测试用例占2行,第1行给出正整数K( < 10000 ),第2行给出K个整数,中间用空格分隔。当K为0时,输入结束,该用例不被处理。
 

Output
对每个测试用例,在1行里输出最大和、最大连续子序列的第一个和最后一个元
素,中间用空格分隔。如果最大连续子序列不唯一,则输出序号i和j最小的那个(如输入样例的第2、3组)。若所有K个元素都是负数,则定义其最大和为0,输出整个序列的首尾元素。
 

Sample Input
  
  
6 -2 11 -4 13 -5 -2 10 -10 1 2 3 4 -5 -23 3 7 -21 6 5 -8 3 2 5 0 1 10 3 -1 -5 -2 3 -1 0 -2 0
 

Sample Output
  
  
20 11 13 10 1 4 10 3 5 10 10 10 0 -1 -2 0 0 0
经典动态规划算法-最大子段和。

AC代码如下:

#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#include<sstream>
#include<vector>
#include<map>
#include<stack>
#include<list>
#include<set>
#include<queue>
#define LL long long
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1 | 1
using namespace std;
const int maxn=1005,maxe=100005,inf=1<<29;//头文件和这个可以不用写的,但是我比较懒,直接套模板
int n,m,a[maxe];
int main()
{
    int t,total;
    while(~scanf("%d",&n)&&n)
    {
        int start=1,b=-(1<<30),sum=-(1<<30),besti,bestj;
        for(int i=1;i<=n;i++)
        {
            scanf("%d",&a[i]);
             if(i==1) start=a[i];
            if(b>=0) b+=a[i];
            else b=a[i],start=a[i];
            if(sum<b) sum=b,besti=start,bestj=a[i];//逗号乃缩减代码神器
        }
        if(sum<0) printf("0 %d %d\n",a[1],a[n]);
        else if(sum==0) printf("%d %d %d\n",0,0,0);
        else printf("%d %d %d\n",sum,besti,bestj);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值