RMQ问题

RMQ(Range Minimum/Maximum Query)(区间最值查询)

Problem Description

给出n(n<=100000)个数,a[0],a[1],a[2]...a[n-1]。(0<a[i]<2^16-1)然后给出m(m<=100000)个询问,每个询

问包含两个整数l,r(0<=l<=r<=n-1),表示区间[l,r],对于每个询问给出对应区间的最小值,即求a[l],a[l+1]...a[r-1],a[r]这些数的最小值。

Input

输入包含多组测试数据(不超过3组)
每组测试数据的第一行是一个整数n。
接下来一行是n个整数,每两个整数之间以空格隔开。
紧接着的一行是一个整数m。
接下来有m行,每行有两个正整数l,r。
各个变量的含义均如上面所述。

Output

对于每组数据的每个询问,输出区间内的最小值,每个结果占一行。

Sample Input

10
4 1 3 6 8 -1 5 9 13 2
7
4 4
0 3
0 5
2 4
5 9
8 9
7 8

Sample Output

8
1
-1
3
-1
2
9

RMQ-ST问题可以参考这篇博客:RMQ-ST
基于ST的RMQ AC如下
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
const int maxn=100005;
int dp[maxn][20],a[maxn],n,m;
//s数组下标从0开始
void init_rmq()
{
    for(int i=0;i<n;i++) dp[i][0]=a[i];
    for(int j=1;(1<<j)<=n;j++)
        for(int i=0;i+(1<<j)-1<n;i++)
            dp[i][j]=min(dp[i][j-1],dp[i+(1<<(j-1))][j-1]);
}
int rmq(int l,int r)
{
    int k=(int)(log(1.0*(r-l+1))/log(2.0));
    return min(dp[l][k],dp[r-(1<<k)+1][k]);
}
void init_rmq_index()
{
    for(int i=0;i<n;i++) dp[i][0]=i;
    for(int j=1;(1<<j)<=n;j++)
        for(int i=0;i+(1<<j)-1<n;i++)
        if(a[dp[i][j-1]]<a[dp[i+(1<<(j-1))][j-1]]) dp[i][j]=dp[i][j-1];
        else dp[i][j]=dp[i+(1<<(j-1))][j-1];
}
int rmq_index(int l,int r)
{
    int k=(int)(log(1.0*(r-l+1))/log(2.0));
    if(a[dp[l][k]]<a[dp[r-(1<<k)+1][k]]) return dp[l][k];
    else return dp[r-(1<<k)+1][k];
}
int main()
{
 //  freopen("in.txt","r",stdin);
  //  freopen("out.txt","w",stdout);
    while(~scanf("%d",&n))
    {
        for(int i=0;i<n;i++) scanf("%d",&a[i]);
        init_rmq();
        int l,r;
        scanf("%d",&m);
        for(int i=0;i<m;i++)
        {
            scanf("%d%d",&l,&r);
            //printf("[%d,%d] = ",l,r);
            printf("%d\n",rmq(l,r));
        }
    }
    return 0;
}
基于线段树算法可参考线段树RMQ
基于线段树的RMQ AC代码如下
#include<iostream>
#include<cstdio>
#include<cmath>
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
using namespace std;
const int maxn=100005;
int a[maxn],Min[maxn<<2],n;
void PushUp(int rt)
{
    Min[rt]=min(Min[rt<<1],Min[rt<<1|1]);
}
void build(int l,int r,int rt)
{
    if(l==r)
    {
        Min[rt]=a[l];
        return ;
    }
    int m=(l+r)>>1;
    build(lson);
    build(rson);
    PushUp(rt);
}
int Query(int L,int R,int l,int r,int rt)
{
    if(L<=l&&r<=R) return Min[rt];
    int m=(l+r)>>1,ans=1<<30;
    if(L<=m) ans=min(ans,Query(L,R,lson));
    if(R>m) ans=min(ans,Query(L,R,rson));
    return ans;
}
int main()
{
   // freopen("in.txt","r",stdin);
    while(~scanf("%d",&n))
    {
        for(int i=1;i<=n;i++) scanf("%d",&a[i]);
        build(1,n,1);
        int l,r,m;
         scanf("%d",&m);
        for(int i=0;i<m;i++)
        {
            scanf("%d%d",&l,&r);
            //printf("[%d,%d] = ",l,r);
            printf("%d\n",Query(l+1,r+1,1,n,1));
        }
       // while(scanf("%d%d",&l,&r),l+r)
       // {
           // printf("[%d,%d] = ",l,r);
           // printf("%d\n",Query(l,r,1,n,1));
      //  }
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值