记得去年比网络赛的时候写了这场比赛,我和李思辰写的,最终一一题之差很遗憾未能进入region
1001 即 HDU 5007 Post Robot
题意大致是说,给你多个单词,对于每个单词,如果含有“Apple”, “iPhone”, “iPod”, “iPad”,那就输出 “MAI MAI MAI!”
如果含有“Sony”,就输出 SONY DAFA IS GOOD!
对于每一个单词,只要查找一下就可以了。就是注意下顺序,是先出现“Sony”还是出现苹果设备。
#include<iostream>
using namespace std;
int judge1(string s)
{
if(s.find("Apple")!=string::npos) return s.find("Apple");
if(s.find("iPhone")!=string::npos) return s.find("iPhone");
if(s.find("iPod")!=string::npos) return s.find("iPod");
if(s.find("iPad")!=string::npos) return s.find("iPad");
return -1;
}
int judge2(string s)
{
if(s.find("Sony")!=string::npos) return s.find("Sony");
return -1;
}
int main()
{
string src;
while(cin>>src)
{
int v1=judge1(src),v2=judge2(src);
if(v1!=-1&&v2==-1) cout<<"MAI MAI MAI!"<<endl;
else if(v1==-1&&v2!=-1) cout<<"SONY DAFA IS GOOD!"<<endl;
else if(v1!=-1&&v2!=-1)
{
if(v1<v2) cout<<"MAI MAI MAI!"<<endl,cout<<"SONY DAFA IS GOOD!"<<endl;
else cout<<"SONY DAFA IS GOOD!"<<endl,cout<<"MAI MAI MAI!"<<endl;
}
}
return 0;
}
1003 即 HDU 5009 Paint Pearls
题意:一个数列,每个点代表一种颜色,每次选一个区间覆盖,覆盖的代价是区间内颜色种类数的平方,直到覆盖整个数列,求最小花费
思路:首先合并颜色相同的点,接着离散化颜色,做dp,dp[i]表示取到位置i的最小花费.动态规划转移方程为dp[j]=min(dp[j],dp[i]+cnt*cnt)(j>i),cnt为区间[i+1,j]中不同的颜色数量。
如果按照这样的复杂度是O(n^2),因为要两层循环枚举i和j。
题目N=50000;按照常理是会超时的,我第一遍确实是超时了。后来小小地优化了一下,飘过了。以这种复杂度过了,心里也不踏实。。。
#include<cstdio>
#include<algorithm>
#include<iostream>
#include<vector>
#include<cstring>
using namespace std;
const int maxn=50005,inf=1<<30;
struct node
{
int x,v;//原始数据,离散化后的值
}a[maxn];
int b[maxn],n,dp[maxn],vis[maxn];
void compress()
{
for(int i=0;i<n;i++) b[i]=a[i+1].x;
sort(b,b+n);//先把辅助数组排序
int len=unique(b,b+n)-b;//再把辅助数组去重
for(int i=1;i<=n;i++) a[i].v=lower_bound(b,b+len,a[i].x)-b;//利用二分查找找出原来的数在辅助数组中的位置
}
void debug()
{
cout<<n<<endl;
for(int i=1;i<=n;i++) cout<<a[i].x<<" ";cout<<endl;
for(int i=1;i<=n;i++) cout<<a[i].v<<" ";cout<<endl;
}
int main()
{
//freopen("in.txt","r",stdin);
while(~scanf("%d",&n))
{
for(int i=1;i<=n;i++) scanf("%d",&a[i].x);
int m=1;
for(int i=2;i<=n;i++)
if(a[i].x!=a[i-1].x) a[++m].x=a[i].x;
n=m;
compress();//离散化
//debug();
for(int i=0;i<=n;i++) dp[i]=i;//初始化
memset(vis,0,sizeof(vis));
for(int i=0;i<n;i++)
{
if(dp[i]>dp[i+1]) continue;//第一种剪枝
int cnt=0;
vector<int>q;
for(int j=i+1;j<=n;j++)
{
if(vis[a[j].v]==0)
{
cnt++;
vis[a[j].v]=1;
q.push_back(a[j].v);
}
if(dp[i]+cnt*cnt>=dp[n]) break;//第二种剪枝
dp[j]=min(dp[j],dp[i]+cnt*cnt);
}
for(int j=0;j<q.size();j++) vis[q[j]]=0;
}
printf("%d\n",dp[n]);
}
return 0;
}