题目描述:
1e5个长度1e5以内的棍子,随便挑出3根不同的(长度可以相同)的棍,问组成三角形的概率
题解:
主要分两块:(1)fft可以快速算出两个棍子和是多少和几个的情况.通过减去单个的和/2后续处理可以得到.(2)有了a+b,并没有a-b.于是思维转换,不对a+b挑c,而是枚举c找a+b.并且定义枚举的c是最大的(这里的最大,如果一样,则标号最大,只是为了不统计重复).这样巧妙地把a-b
重点:
关键是第二个思路的转换
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <cmath>
#include <ctype.h>
#include <limits.h>
#include <cstdlib>
#include <algorithm>
#include <vector>
#include <queue>
#include <map>
#include <stack>
#include <set>
#include <bitset>
#define CLR(a) memset(a, 0, sizeof(a))
#define REP(i, a, b) for(ll i = a;i < b;i++)
#define REP_D(i, a, b) for(ll i = a;i <= b;i++)
typedef long long ll;
using namespace std;
const double PI = acos(-1.0);
const ll maxn = 5e5 + 100;
ll num[maxn], a[maxn];
ll sum[maxn];
ll n, len, num_n;
//复数结构体
struct Complex
{
double x,y;//实部和虚部 x+yi
Complex(double _x = 0.0,double _y = 0.0)
{
x = _x;
y = _y;
}
Complex operator -(const Complex &b)const
{
return Complex(x-b.x,y-b.y);
}
Complex operator +(const Complex &b)const
{
return Complex(x+b.x,y+b.y);
}
Complex operator *(const Complex &b)const
{
return Complex(x*b.x-y*b.y,x*b.y+y*b.x);
}
};
Complex x1[maxn],x2[maxn];
/*
* 进行FFT和IFFT前的反转变换。
* 位置i和 (i二进制反转后位置)互换
* len必须去2的幂
*/
void change(Complex y[],ll len)
{
ll i,j,k;
for(i = 1, j = len/2; i <len-1; i++)
{
if(i < j)swap(y[i],y[j]);
//交换互为小标反转的元素,i<j保证交换一次
//i做正常的+1,j左反转类型的+1,始终保持i和j是反转的
k = len/2;
while(j >= k)
{
j -= k;
k /= 2;
}
if(j < k)j += k;
}
}
/*
* 做FFT
* len必须为2^k形式,
* on==1时是DFT,on==-1时是IDFT
*/
void fft(Complex y[],ll len,ll on)
{
change(y,len);
for(ll h = 2; h <= len; h <<= 1)
{
Complex wn(cos(-on*2*PI/h),sin(-on*2*PI/h));
for(ll j = 0; j < len; j+=h)
{
Complex w(1,0);
for(ll k = j; k < j+h/2; k++)
{
Complex u = y[k];
Complex t = w*y[k+h/2];
y[k] = u+t;
y[k+h/2] = u-t;
w = w*wn;
}
}
}
if(on == -1)
for(ll i = 0; i < len; i++)
y[i].x /= len;
}
void doFFT(ll a[], ll &len)
{
ll len1 = 1;
while(len1 < 2*len)
{
len1*=2;
}
for(ll i=0;i<len;i++)
{
x1[i] = Complex(a[i], 0);
}
for(ll i=len;i<len1;i++)
{
x1[i] = Complex(0, 0);
}
fft(x1, len1, 1);
for(ll i=0;i < len1;i++)
{
x1[i] = x1[i]*x1[i];
}
fft(x1, len1, -1);
len=len1;
for(ll i=0;i < len;i++)
{
a[i] = (ll)(x1[i].x+0.5);
}
}
ll select(ll x)
{
if(x==0)
return 0;
if(x==1)
return 0;
return x*(x-1)/2;
}
void solve()
{
sort(a, a+n);
len = a[n-1]+1;
num_n = len;
CLR(num);
REP(i, 0, n)
{
num[a[i]]++;
}
//fft
doFFT(num, num_n);
REP(i, 0, n)
{
num[a[i]+a[i]]--;
}
REP(i, 0, num_n)
{
// if(num[i]%2!=0)
// printf("dfasdfasd");
num[i] /= 2;
}
//printf("%I64d\n", num_n);
sum[0]=0;
REP(i, 1, num_n)
{
sum[i]=sum[i-1]+num[i];
}
ll ans=0;
REP(i, 0, n)
{
ans += (sum[num_n-1] - sum[a[i]]);
ans -= (n-1);
ans -= select(n-i-1);
ans -= (n-i-1)*i;
}
ll tot = n*(n-1)*(n-2)/6;
double res = ans*1.0/(double)tot;
printf("%.7f\n", res);
}
int main()
{
//freopen("3Cin.txt", "r", stdin);
//freopen("3Cout.txt", "w", stdout);
ll t;
scanf("%I64d", &t);
while(t--)
{
scanf("%I64d", &n);
REP(i, 0, n)
{
scanf("%I64d", &a[i]);
}
solve();
}
return 0;
}