Tacotron-2 实验记录

本文记录了作者在Ubuntu上进行Tacotron-2语音合成模型的实验过程,包括从GitHub获取代码、训练、合成和优化的步骤。在训练过程中遇到了GPU资源分配、错误处理和模型调整等问题,并探讨了不同GPU设置、batch_size和teacher forcing模式对训练速度的影响。同时,对比了使用线性谱和不同声码器(如WaveNet、LPCNET)的效果,以提升音质。
摘要由CSDN通过智能技术生成

Try the Std Version

1. Get Tacotron-2-master.zip from https://github.com/Rayhane-mamah/Tacotron-2

2.Unzip Tacotron-2-master.zip on Unbuntu

3.Terminal: cp -r training_data ./Tacotron-2    #training_data is folder which was preparing by LJSpeech-1.1 & dataset

4.Terminal: python train.py --model='Tacotron-2':

CancelledError (see above for traceback): Enqueue operation was cancelled
         [[Node: datafeeder/eval_queue_enqueue = QueueEnqueueV2[Tcomponents=[DT_INT32, DT_INT32, DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_INT32, DT_INT32], timeout_ms=-1, _device="/job:localhost/replica:0/task:0/device:CPU:0"](datafeeder/eval_queue, _arg_datafeeder/inputs_0_1, _arg_datafeeder/input_lengths_0_0, _arg_datafeeder/mel_targets_0_3, _arg_datafeeder/token_targets_0_6, _arg_datafeeder/linear_targets_0_2, _arg_datafeeder/targets_lengths_0_5, _arg_datafeeder/split_infos_0_4)]]


Traceback (most recent call last):
  File "train.py", line 138, in <module>
    main()
  File "train.py", line 132, in main
    train(args, log_dir, hparams)
  File "train.py", line 57, in train
    raise('Error occured while training Tacotron, Exiting!')
TypeError: exceptions must derive from BaseException

Maybe this wrong is caused by gpu collide,

Write code:

import os
os.environ["CUDA_VISIBLE_DEVICES"] = "6, 7"

Then it can be training.(step1, 2, 3......)

(Befor it , sys need to get conda env including requirment. It's not a easy thing. Here need to add)

Then the time of trainnint this batch(32) is 4.5 sec, although use two gpus, but the memory seems to only use the forst one.

(Need to test gpu_nums = 4, and use 4gpus; And set different batch_size, and training steps)

###from now is test

File:train.py

'5, 6'

File:hyparam.py

tacotron_num_gpus = 2

tacotron_batch_size = 32 * 2

parser.add_argument('--summary_interval', type=int, default=250,
        help='Steps between running summary ops')
    parser.add_argument('--embedding_interval', type=int, default=5000,
        help='Steps between updating embeddings projection visualization')
    parser.add_argument('--checkpoint_interval', type=int, default=2500,
        help='Steps between writing checkpoints')
    parser.add_argument('--eval_interval', type=int, default=5000,
        help='Steps between eval on test data')
change =>

parser.add_argument('--summary_interval', type=int, default=1000,
        help='Steps between running summary ops')
    parser.add
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值