文章目录
10进制
以10为底数来表示一个数,数码集S={0,1,2,3,4,5,6,7,8,9}。
10进制的整数表示
一个十进制数表示为:
±
S
k
−
1
.
.
.
S
2
S
1
S
0
\footnotesize ±S_{k-1}...S_{2}S_{1}S_{0}
±Sk−1...S2S1S0
值计算为:
N
=
±
(
S
k
−
1
×
1
0
k
−
1
+
S
k
−
2
×
1
0
k
−
2
+
.
.
.
+
S
2
×
1
0
2
+
S
1
×
1
0
1
+
S
0
×
1
0
0
)
\footnotesize N=±(S_{k-1}×10^{k-1}+S_{k-2}×10^{k-2}+...+S_{2}×10^{2}+S_{1}×10^{1}+S_{0}×10^{0})
N=±(Sk−1×10k−1+Sk−2×10k−2+...+S2×102+S1×101+S0×100)
其中S代表1个数码,k是数码的位置量,底数是10。
例如:表示整数+186
1
0
2
1
0
1
1
0
0
1
8
6
N
=
+
(
1
×
1
0
2
+
8
×
1
0
1
+
6
×
1
0
0
)
=
+
186
\footnotesize \begin{matrix} 10^2~~~~~~~~~~~~~~~~~~~10^1~~~~~~~~~~~~~~~~~~10^0 \\ 1~~~~~~~~~~~~~~~~~~~~~~~8~~~~~~~~~~~~~~~~~~~~~~6\\ ~~~~N=+(1×10^{2}~~~+~~~8×10^{1}~~~+~~~6×10^{0})=+186 \end{matrix}
102 101 1001 8 6 N=+(1×102 + 8×101 + 6×100)=+186
最大值为:
N
m
a
x
=
1
0
k
−
1
\footnotesize N_{max}=10^k-1
Nmax=10k−1
10进制的实数表示
实数是带有小数部分的数字。
值计算公式:
整
数
部
分
小
数
部
分
N
=
±
(
S
k
−
1
×
1
0
k
−
1
+
.
.
.
+
S
1
×
1
0
1
+
S
0
×
1
0
0
)
+
(
S
−
1
×
1
0
−
1
+
.
.
.
+
S
−
i
×
1
0
−
l
)
\footnotesize ~~~~~~~~~~~~~~~~~~~~~整数部分~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~小数部分\\ N=±(S_{k-1}×10^{k-1}+...+S_{1}×10^{1}+S_{0}×10^{0})+(S_{-1}×10^{-1}+...+S_{-i}×10^{-l})
整数部分 小数部分N=±(Sk−1×10k−1+...+S1×101+S0×100)+(S−1×10−1+...+S−i×10−l)
例如:表示实数+12.34
1
0
1
1
0
0
1
0
−
1
1
0
−
2
位
置
量
1
2
3
4
数
字
N
=
+
(
1
×
1
0
1
+
2
×
1
0
0
+
3
×
1
0
−
1
+
4
×
1
0
−
2
)
=
+
12.34
\footnotesize \begin{matrix} ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~10^1~~~~~~~~~~~~~~~~~10^0~~~~~~~~~~~~~~~~~10^{-1}~~~~~~~~~~~~~~~~~~~10^{-2}~~~~~~~~~~~~~位置量 \\ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~1~~~~~~~~~~~~~~~~~~~~~2~~~~~~~~~~~~~~~~~~~~~~3~~~~~~~~~~~~~~~~~~~~~~~~~4~~~~~~~~~~~~~~~~~数字\\ ~~~~~~~~~~~~~~~N=+(1×10^{1}~~~+~~~2×10^{0}~~~+~~~3×10^{-1}~~~+~~~4×10^{-2})=+12.34 \end{matrix}
101 100 10−1 10−2 位置量 1 2 3 4 数字 N=+(1×101 + 2×100 + 3×10−1 + 4×10−2)=+12.34
2进制
以2为底数来表示一个数,数码集S={0,1}。在以2为底的数字系统中,一个数码也被称为位。
2进制的整数表示
一个2进制数表示为:
±
(
S
k
−
1
.
.
.
S
1
S
0
)
2
\footnotesize ±(S_{k-1}...S_{1}S_{0})_2
±(Sk−1...S1S0)2
值计算为:
N
=
±
(
S
k
−
1
×
2
k
−
1
+
S
k
−
2
×
2
k
−
2
+
.
.
.
+
S
2
×
2
2
+
S
1
×
2
1
+
S
0
×
2
0
)
\footnotesize N=±(S_{k-1}×2^{k-1}+S_{k-2}×2^{k-2}+...+S_{2}×2^{2}+S_{1}×2^{1}+S_{0}×2^{0})
N=±(Sk−1×2k−1+Sk−2×2k−2+...+S2×22+S1×21+S0×20)
其中S代表1个数码,k是数码的位置量,底数是2。
例如:表示一个数+10,其二进制数为(1010)
2
3
2
2
2
1
2
0
位
置
量
1
0
1
0
数
字
N
=
+
(
1
×
2
3
+
0
×
2
2
+
1
×
2
1
+
0
×
2
0
)
=
+
10
\footnotesize \begin{matrix} ~~~~~~~~~~~~~~~~~~~~~~~~~~~~2^3~~~~~~~~~~~~~~~~~~~2^2~~~~~~~~~~~~~~~~~~2^1~~~~~~~~~~~~~~~~~~2^0~~~~~~~~~~~~~位置量\\ ~~~~~~~~~~~~~~~~~~~~~~~~1~~~~~~~~~~~~~~~~~~~~~0~~~~~~~~~~~~~~~~~~~~1~~~~~~~~~~~~~~~~~~~~0~~~~~~~~~~~~~~~数字\\ ~~~~N=+(1×2^{3}~~~+~~~0×2^{2}~~~+~~~1×2^{1}~~~+~~~0×2^{0})=+10 \end{matrix}
23 22 21 20 位置量 1 0 1 0 数字 N=+(1×23 + 0×22 + 1×21 + 0×20)=+10
最大值为:
N
m
a
x
=
2
k
−
1
\footnotesize N_{max}=2^k-1
Nmax=2k−1
2进制的实数表示
二进制中的实数,由左边k位到右边l位来组成。
值计算公式:
整
数
部
分
小
数
部
分
N
=
±
(
S
k
−
1
×
2
k
−
1
+
.
.
.
+
S
1
×
2
1
+
S
0
×
2
0
)
+
(
S
−
1
×
2
−
1
+
.
.
.
+
S
−
i
×
2
−
l
)
\footnotesize ~~~~~~~~~~~~~~~~~~~~~整数部分~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~小数部分\\ N=±(S_{k-1}×2^{k-1}+...+S_{1}×2^{1}+S_{0}×2^{0})+(S_{-1}×2^{-1}+...+S_{-i}×2^{-l})
整数部分 小数部分N=±(Sk−1×2k−1+...+S1×21+S0×20)+(S−1×2−1+...+S−i×2−l)
例如:表示实数+10.75,其二进制数为(1010.11)
2
3
2
2
2
1
2
0
2
−
1
2
−
2
1
0
1
0
.
1
1
N
=
+
(
1
×
2
3
+
0
×
2
2
+
1
×
2
1
+
0
×
2
0
+
1
×
2
−
1
+
1
×
2
−
2
)
=
+
10.75
\footnotesize \begin{matrix} ~~~~~~2^3~~~~~~~~~~~~~~~~~~2^2~~~~~~~~~~~~~~~~~~2^{1}~~~~~~~~~~~~~~~~~~2^{0}~~~~~~~~~~~~~~~~~~2^{-1}~~~~~~~~~~~~~~~~2^{-2} \\ ~~1~~~~~~~~~~~~~~~~~~~~0~~~~~~~~~~~~~~~~~~~~1~~~~~~~~~~~~~~~~~~~~0~~~~~~~~~.~~~~~~~~~~1~~~~~~~~~~~~~~~~~~~~1\\ ~~~~~~~~~~~~N=+(1×2^{3}~~~+~~~0×2^{2}~~~+~~~1×2^{1}~~~+~~~0×2^{0}~~~+~~~1×2^{-1}~~+~~1×2^{-2})=+10.75 \end{matrix}
23 22 21 20 2−1 2−2 1 0 1 0 . 1 1 N=+(1×23 + 0×22 + 1×21 + 0×20 + 1×2−1 + 1×2−2)=+10.75
8进制
以8为底数来表示一个数,数码集S={0,1,2,3,4,5,6,7}。
8进制的整数表示
值计算为:
N
=
±
(
S
k
−
1
×
8
k
−
1
+
S
k
−
2
×
8
k
−
2
+
.
.
.
+
S
2
×
8
2
+
S
1
×
8
1
+
S
0
×
8
0
)
\footnotesize N=±(S_{k-1}×8^{k-1}+S_{k-2}×8^{k-2}+...+S_{2}×8^{2}+S_{1}×8^{1}+S_{0}×8^{0})
N=±(Sk−1×8k−1+Sk−2×8k−2+...+S2×82+S1×81+S0×80)
其中S代表1个数码,k是数码的位置量,底数是8。
例如:表示一个数+668,其8进制数为(1234)
8
3
8
2
8
1
8
0
位
置
量
1
2
3
4
数
字
N
=
+
(
1
×
8
3
+
2
×
8
2
+
3
×
8
1
+
4
×
8
0
)
=
+
668
\footnotesize \begin{matrix} ~~~~~~~~~~~~~~~~~~~~~~~~~~~~8^3~~~~~~~~~~~~~~~~~~~8^2~~~~~~~~~~~~~~~~~~8^1~~~~~~~~~~~~~~~~~~8^0~~~~~~~~~~~~~位置量\\ ~~~~~~~~~~~~~~~~~~~~~~~~1~~~~~~~~~~~~~~~~~~~~~2~~~~~~~~~~~~~~~~~~~~3~~~~~~~~~~~~~~~~~~~~4~~~~~~~~~~~~~~~数字\\ ~~~~N=+(1×8^{3}~~~+~~~2×8^{2}~~~+~~~3×8^{1}~~~+~~~4×8^{0})=+668 \end{matrix}
83 82 81 80 位置量 1 2 3 4 数字 N=+(1×83 + 2×82 + 3×81 + 4×80)=+668
最大值为:
N
m
a
x
=
8
k
−
1
\footnotesize N_{max}=8^k-1
Nmax=8k−1
8进制的实数表示
值计算公式:
整
数
部
分
小
数
部
分
N
=
±
(
S
k
−
1
×
8
k
−
1
+
.
.
.
+
S
1
×
8
1
+
S
0
×
8
0
)
+
(
S
−
1
×
8
−
1
+
.
.
.
+
S
−
i
×
8
−
l
)
\footnotesize ~~~~~~~~~~~~~~~~~~~~~整数部分~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~小数部分\\ N=±(S_{k-1}×8^{k-1}+...+S_{1}×8^{1}+S_{0}×8^{0})+(S_{-1}×8^{-1}+...+S_{-i}×8^{-l})
整数部分 小数部分N=±(Sk−1×8k−1+...+S1×81+S0×80)+(S−1×8−1+...+S−i×8−l)
例如:表示实数+668.125,其8进制数为(1234.1)
8
3
8
2
8
1
8
0
8
−
1
1
2
3
4
.
1
N
=
+
(
1
×
8
3
+
2
×
8
2
+
3
×
8
1
+
4
×
8
0
+
1
×
8
−
1
)
=
+
668.125
\footnotesize \begin{matrix} ~~~8^3~~~~~~~~~~~~~~~~~~8^2~~~~~~~~~~~~~~~~~~8^{1}~~~~~~~~~~~~~~~~~~8^{0}~~~~~~~~~~~~~~~~~~8^{-1}\\ 1~~~~~~~~~~~~~~~~~~~~2~~~~~~~~~~~~~~~~~~~~3~~~~~~~~~~~~~~~~~~~~4~~~~~~~~~~.~~~~~~~~~~1\\ ~~~~~~~~~~~~~N=+(1×8^{3}~~~+~~~2×8^{2}~~~+~~~3×8^{1}~~~+~~~4×8^{0}~~~+~~~1×8^{-1})=+668.125 \end{matrix}
83 82 81 80 8−11 2 3 4 . 1 N=+(1×83 + 2×82 + 3×81 + 4×80 + 1×8−1)=+668.125
16进制
以16为底数来表示一个数,数码集S={0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F};符号A,B,C,D,E,F(不区分大小写)分别为10,11,12,13,14,15。通常以0x开头的数字表示为16进制数,如:0x123。
16进制的整数表示
值计算为:
N
=
±
(
S
k
−
1
×
1
6
k
−
1
+
S
k
−
2
×
1
6
k
−
2
+
.
.
.
+
S
2
×
1
6
2
+
S
1
×
1
6
1
+
S
0
×
1
6
0
)
\footnotesize N=±(S_{k-1}×16^{k-1}+S_{k-2}×16^{k-2}+...+S_{2}×16^{2}+S_{1}×16^{1}+S_{0}×16^{0})
N=±(Sk−1×16k−1+Sk−2×16k−2+...+S2×162+S1×161+S0×160)
其中S代表1个数码,k是数码的位置量,底数是16。
例如:表示一个数+668,其16进制数为(29C)
1
6
2
1
6
1
1
6
0
位
置
量
2
9
C
数
字
N
=
+
(
2
×
1
6
2
+
9
×
1
6
1
+
12
×
1
6
0
)
=
+
668
\footnotesize \begin{matrix} ~~~~~~~~~~~~~~~~~~~~~~~16^2~~~~~~~~~~~~~~~~~~~16^1~~~~~~~~~~~~~~~~~~~16^0~~~~~~~~~~~~~位置量\\ ~~~~~~~~~~~~~~~~~~~~~2~~~~~~~~~~~~~~~~~~~~~~9~~~~~~~~~~~~~~~~~~~~~~~C~~~~~~~~~~~~~~~数字\\ ~~~~N=+(2×16^{2}~~~+~~~9×16^{1}~~~+~~~12×16^{0})=+668 \end{matrix}
162 161 160 位置量 2 9 C 数字 N=+(2×162 + 9×161 + 12×160)=+668
最大值为:
N
m
a
x
=
1
6
k
−
1
\footnotesize N_{max}=16^k-1
Nmax=16k−1
16进制的实数表示
值计算公式:
整
数
部
分
小
数
部
分
N
=
±
(
S
k
−
1
×
1
6
k
−
1
+
.
.
.
+
S
1
×
1
6
1
+
S
0
×
1
6
0
)
+
(
S
−
1
×
1
6
−
1
+
.
.
.
+
S
−
i
×
1
6
−
l
)
\footnotesize ~~~~~~~~~~~~~~~~~~~~~整数部分~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~小数部分\\ N=±(S_{k-1}×16^{k-1}+...+S_{1}×16^{1}+S_{0}×16^{0})+(S_{-1}×16^{-1}+...+S_{-i}×16^{-l})
整数部分 小数部分N=±(Sk−1×16k−1+...+S1×161+S0×160)+(S−1×16−1+...+S−i×16−l)
例如:表示实数+668.9375,其16进制数为(29C.F)
1
6
2
1
6
1
1
6
0
1
6
−
1
2
9
C
.
F
N
=
+
(
2
×
1
6
2
+
9
×
1
6
1
+
12
×
1
6
0
+
15
×
1
6
−
1
)
=
+
668.9375
\footnotesize \begin{matrix} ~~~16^2~~~~~~~~~~~~~~~~~~16^{1}~~~~~~~~~~~~~~~~~~~~16^{0}~~~~~~~~~~~~~~~~~~~~~16^{-1}\\ 2~~~~~~~~~~~~~~~~~~~~~~9~~~~~~~~~~~~~~~~~~~~~~~~C~~~~~~~~~~~.~~~~~~~~~~~F\\ ~~~~~~~~~~~~~~~~~N=+(2×16^{2}~~~+~~~9×16^{1}~~~+~~~12×16^{0}~~~+~~~15×16^{-1})=+668.9375 \end{matrix}
162 161 160 16−12 9 C . F N=+(2×162 + 9×161 + 12×160 + 15×16−1)=+668.9375
不同进制的数字比较
十进制 | 二进制 | 八进制 | 十六进制 |
---|---|---|---|
0 | 0 | 0 | 0 |
1 | 1 | 1 | 1 |
2 | 10 | 2 | 2 |
3 | 11 | 3 | 3 |
4 | 100 | 4 | 4 |
5 | 101 | 5 | 5 |
6 | 110 | 6 | 6 |
7 | 111 | 7 | 7 |
8 | 1000 | 10 | 8 |
9 | 1001 | 11 | 9 |
10 | 1010 | 12 | A |
11 | 1011 | 13 | B |
12 | 1100 | 14 | C |
13 | 1101 | 15 | D |
14 | 1110 | 16 | E |
15 | 1111 | 17 | F |