Sumsets
Time Limit: 2000MS | Memory Limit: 200000K | |
Total Submissions: 12693 | Accepted: 5092 |
Description
Farmer John commanded his cows to search for different sets of numbers that sum to a given number. The cows use only numbers that are an integer power of 2. Here are the possible sets of numbers that sum to 7:
1) 1+1+1+1+1+1+1
2) 1+1+1+1+1+2
3) 1+1+1+2+2
4) 1+1+1+4
5) 1+2+2+2
6) 1+2+4
Help FJ count all possible representations for a given integer N (1 <= N <= 1,000,000).
1) 1+1+1+1+1+1+1
2) 1+1+1+1+1+2
3) 1+1+1+2+2
4) 1+1+1+4
5) 1+2+2+2
6) 1+2+4
Help FJ count all possible representations for a given integer N (1 <= N <= 1,000,000).
Input
A single line with a single integer, N.
Output
The number of ways to represent N as the indicated sum. Due to the potential huge size of this number, print only last 9 digits (in base 10 representation).
Sample Input
7
Sample Output
6/* dp题,参考别人代码 奇数:dp[i]=dp[i-1];只有后边加个1这一种状态 偶数:dp[i]=dp[i-1]+d[i/2]在后边加两个1即和i-1一样,或者i-2加个2即相当于求2的次方组成的个数,相当于用i/2求1的次方组成的个数 注意:预处理要将数组定义到外边 Time:2014-8-3 13:26 */ #include<stdio.h> #include<string.h> const int MAX=1000000+10; const int mod=1000000000; long long a[MAX]={0,1}; int main() { for(int i=2;i<MAX;i++) { if(i&1) a[i]=a[i-1]; else a[i]=(a[i/2]+a[i-1])%mod; } long long n; while(scanf("%lld",&n)!=EOF) printf("%lld\n",a[n]); return 0; }