Rightmost Digit
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 32070 Accepted Submission(s): 12306
Problem Description
Given a positive integer N, you should output the most right digit of N^N.
Input
The input contains several test cases. The first line of the input is a single integer T which is the number of test cases. T test cases follow.
Each test case contains a single positive integer N(1<=N<=1,000,000,000).
Each test case contains a single positive integer N(1<=N<=1,000,000,000).
Output
For each test case, you should output the rightmost digit of N^N.
Sample Input
2 3 4
Sample Output
7 6HintIn the first case, 3 * 3 * 3 = 27, so the rightmost digit is 7. In the second case, 4 * 4 * 4 * 4 = 256, so the rightmost digit is 6.#include<cstdio> #include<cstring> #include<algorithm> using namespace std; //快速幂取余公式 /* a^b mod c =(a*a)^(b/2) ) mod c ,b是偶数 a^b mod c=((a*a)^(b/2) *a) mod c ,b是奇数 k=(a*a)mod c b是偶数 (k)^(b/2)mod c b 是奇数 ((k)^(b/2)modc *a )mod c */ int PowerMod(int a,int b,int c){ int ans=1; a=a%c; while(b>0){ if(b&1) ans=(ans*a)%c;//到了 1 的时候就循环结束了 b>>=1; a=(a*a)%c; } return ans; } int main(){ int T,N; scanf("%d",&T); while(T--){ scanf("%d",&N); printf("%d\n",PowerMod(N,N,10)); } return 0; }