点的变换
时间限制:
2000 ms | 内存限制:
65535 KB
难度:
5
-
描述
-
平面上有不超过10000个点,坐标都是已知的,现在可能对所有的点做以下几种操作:
平移一定距离(M),相对X轴上下翻转(X),相对Y轴左右翻转(Y),坐标缩小或放大一定的倍数(S),所有点对坐标原点逆时针旋转一定角度(R)。
操作的次数不超过1000000次,求最终所有点的坐标。
提示:如果程序中用到PI的值,可以用acos(-1.0)获得。
-
输入
-
只有一组测试数据
测试数据的第一行是两个整数N,M,分别表示点的个数与操作的个数(N<=10000,M<=1000000)
随后的一行有N对数对,每个数对的第一个数表示一个点的x坐标,第二个数表示y坐标,这些点初始坐标大小绝对值不超过100。
随后的M行,每行代表一种操作,行首是一个字符:
首字符如果是M,则表示平移操作,该行后面将跟两个数x,y,表示把所有点按向量(x,y)平移;
首字符如果是X,则表示把所有点相对于X轴进行上下翻转;
首字符如果是Y,则表示把所有点相对于Y轴进行左右翻转;
首字符如果是S,则随后将跟一个数P,表示坐标放大P倍;
首字符如果是R,则随后将跟一个数A,表示所有点相对坐标原点逆时针旋转一定的角度A(单位是度)
输出
-
每行输出两个数,表示一个点的坐标(对结果四舍五入到小数点后1位,输出一位小数位)
点的输出顺序应与输入顺序保持一致
样例输入
-
2 5 1.0 2.0 2.0 3.0 X Y M 2.0 3.0 S 2.0 R 180
样例输出
-
-2.0 -2.0 0.0 0.0
来源
经典题目1
给定n个点,m个操作,构造O(m+n)的算法输出m个操作后各点的位置。操作有平移、缩放、翻转和旋转
这里的操作是对所有点同时进行的。其中翻转是以坐标轴为对称轴进行翻转(两种情况),旋转则以原点为中心。如果对每个点分别进行模拟,那么m个操作总共耗 时O(mn)。利用矩阵乘法可以在O(m)的时间里把所有操作合并为一个矩阵,然后每个点与该矩阵相乘即可直接得出最终该点的位置,总共耗时 O(m+n)。假设初始时某个点的坐标为x和y,下面5个矩阵可以分别对其进行平移、旋转、翻转和旋转操作。预先把所有m个操作所对应的矩阵全部乘起来, 再乘以(x,y,1),即可一步得出最终点的位置。注意:m个操作的矩阵连乘时必须左乘
代码如下:
#include<cstdio> #include<cstring> #include<cmath> #include<algorithm> using namespace std; #define MAX 10000+10 struct Matrix{ double a[5][5]; }p[MAX]; Matrix mul(Matrix x,Matrix y){ Matrix tmp; memset(tmp.a,0,sizeof(tmp.a)); for(int i=1;i<=3;i++) for(int j=1;j<=3;j++) for(int k=1;k<=3;k++){ tmp.a[i][j]+=x.a[i][k]*y.a[k][j]; } return tmp; } int main(){ int N,M; //freopen("nyoj298.txt","r",stdin); scanf("%d%d",&N,&M); for(int i=1;i<=N;i++){ scanf("%lf%lf",&p[i].a[1][1],&p[i].a[2][1]); p[i].a[3][1]=1; } Matrix res,ans,trans; double x,y,pp,deg,angle; for(int i=1;i<=3;i++){res.a[i][i]=1;}//单位矩阵 char cmd[3]; for(int i=1;i<=M;i++){ memset(trans.a,0,sizeof(trans.a)); scanf("%s",cmd); for(int j=1;j<=3;j++)trans.a[j][j]=1; if(cmd[0]=='X'){ trans.a[2][2]=-1; }else if(cmd[0]=='Y'){ trans.a[1][1]=-1; }else if(cmd[0]=='M'){ scanf("%lf%lf",&x,&y); trans.a[1][3]=x; trans.a[2][3]=y; }else if(cmd[0]=='S'){ scanf("%lf",&pp); trans.a[1][1]=pp; trans.a[2][2]=pp; }else if(cmd[0]=='R'){ scanf("%lf",°); angle=deg/180*acos(-1.0);//转换成弧度 trans.a[1][1]=cos(angle); trans.a[1][2]=-sin(angle); trans.a[2][1]=sin(angle); trans.a[2][2]=cos(angle); } res=mul(trans,res);//矩阵必须左乘 } for(int i=1;i<=N;i++){ ans=mul(res,p[i]); printf("%.1lf %.1lf\n",ans.a[1][1],ans.a[2][1]); } return 0; }
-
只有一组测试数据