NYOJ298 点的变换(经典矩阵应用)

本文介绍了一种高效的算法,用于处理平面内多个点经过平移、缩放、翻转及旋转等几何变换后的坐标计算问题。通过矩阵运算,将多次变换合并为单一操作,实现了O(m+n)的时间复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

点的变换

时间限制: 2000 ms  |  内存限制: 65535 KB
难度: 5
描述

平面上有不超过10000个点,坐标都是已知的,现在可能对所有的点做以下几种操作:

平移一定距离(M),相对X轴上下翻转(X),相对Y轴左右翻转(Y),坐标缩小或放大一定的倍数(S),所有点对坐标原点逆时针旋转一定角度(R)。    

操作的次数不超过1000000次,求最终所有点的坐标。

 

提示:如果程序中用到PI的值,可以用acos(-1.0)获得。

输入
只有一组测试数据
测试数据的第一行是两个整数N,M,分别表示点的个数与操作的个数(N<=10000,M<=1000000)
随后的一行有N对数对,每个数对的第一个数表示一个点的x坐标,第二个数表示y坐标,这些点初始坐标大小绝对值不超过100。
随后的M行,每行代表一种操作,行首是一个字符:
首字符如果是M,则表示平移操作,该行后面将跟两个数x,y,表示把所有点按向量(x,y)平移;
首字符如果是X,则表示把所有点相对于X轴进行上下翻转;
首字符如果是Y,则表示把所有点相对于Y轴进行左右翻转;
首字符如果是S,则随后将跟一个数P,表示坐标放大P倍;
首字符如果是R,则随后将跟一个数A,表示所有点相对坐标原点逆时针旋转一定的角度A(单位是度)
输出
每行输出两个数,表示一个点的坐标(对结果四舍五入到小数点后1位,输出一位小数位)
点的输出顺序应与输入顺序保持一致
样例输入
2 5
1.0 2.0 2.0 3.0
X
Y
M 2.0 3.0
S 2.0
R 180
样例输出
-2.0 -2.0
0.0 0.0
来源

经典问题

经典题目1 
  
给定n个点,m个操作,构造O(m+n)的算法输出m个操作后各点的位置。操作有平移、缩放、翻转和旋转
这里的操作是对所有点同时进行的。其中翻转是以坐标轴为对称轴进行翻转(两种情况),旋转则以原点为中心。如果对每个点分别进行模拟,那么m个操作总共耗 时O(mn)。利用矩阵乘法可以在O(m)的时间里把所有操作合并为一个矩阵,然后每个点与该矩阵相乘即可直接得出最终该点的位置,总共耗时 O(m+n)。假设初始时某个点的坐标为x和y,下面5个矩阵可以分别对其进行平移、旋转、翻转和旋转操作。预先把所有m个操作所对应的矩阵全部乘起来, 再乘以(x,y,1),即可一步得出最终点的位置。

注意:m个操作的矩阵连乘时必须左乘

代码如下:

#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define MAX 10000+10
struct Matrix{
	double a[5][5];
}p[MAX];
Matrix mul(Matrix x,Matrix y){
	Matrix tmp;
	memset(tmp.a,0,sizeof(tmp.a));
	for(int i=1;i<=3;i++)
		for(int j=1;j<=3;j++)
			for(int k=1;k<=3;k++){
				tmp.a[i][j]+=x.a[i][k]*y.a[k][j];
			}
	return tmp;
}
int main(){
	int N,M;
	//freopen("nyoj298.txt","r",stdin);
	scanf("%d%d",&N,&M);
	for(int i=1;i<=N;i++){
		scanf("%lf%lf",&p[i].a[1][1],&p[i].a[2][1]);
		p[i].a[3][1]=1;
	}
	Matrix res,ans,trans;
	double x,y,pp,deg,angle;
	for(int i=1;i<=3;i++){res.a[i][i]=1;}//单位矩阵
	char cmd[3];
	for(int i=1;i<=M;i++){
		memset(trans.a,0,sizeof(trans.a));
		scanf("%s",cmd);
		for(int j=1;j<=3;j++)trans.a[j][j]=1;
		if(cmd[0]=='X'){
			trans.a[2][2]=-1;
		}else if(cmd[0]=='Y'){
			trans.a[1][1]=-1;
		}else if(cmd[0]=='M'){
			scanf("%lf%lf",&x,&y);
			trans.a[1][3]=x;
			trans.a[2][3]=y;
		}else if(cmd[0]=='S'){
			scanf("%lf",&pp);
			trans.a[1][1]=pp;
			trans.a[2][2]=pp;
		}else if(cmd[0]=='R'){
			scanf("%lf",&deg);
			angle=deg/180*acos(-1.0);//转换成弧度
			trans.a[1][1]=cos(angle);
			trans.a[1][2]=-sin(angle);
			trans.a[2][1]=sin(angle);
			trans.a[2][2]=cos(angle);
		}
		res=mul(trans,res);//矩阵必须左乘
	}
	for(int i=1;i<=N;i++){
	 	ans=mul(res,p[i]);
	 	printf("%.1lf %.1lf\n",ans.a[1][1],ans.a[2][1]);
	 }
return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值