Harry and Magical Computer
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 37 Accepted Submission(s): 18
Problem Description
In reward of being yearly outstanding magic student, Harry gets a magical computer. When the computer begins to deal with a process, it will work until the ending of the processes. One day the computer got n processes to deal with. We number the processes from 1 to n. However there are some dependencies between some processes. When there exists a dependencies (a, b), it means process b must be finished before process a. By knowing all the m dependencies, Harry wants to know if the computer can finish all the n processes.
Input
There are several test cases, you should process to the end of file.
For each test case, there are two numbers n m on the first line, indicates the number processes and the number of dependencies. 1≤n≤100,1≤m≤10000
The next following m lines, each line contains two numbers a b, indicates a dependencies (a, b). 1≤a,b≤n
For each test case, there are two numbers n m on the first line, indicates the number processes and the number of dependencies. 1≤n≤100,1≤m≤10000
The next following m lines, each line contains two numbers a b, indicates a dependencies (a, b). 1≤a,b≤n
Output
Output one line for each test case.
If the computer can finish all the process print "YES" (Without quotes).
Else print "NO" (Without quotes).
If the computer can finish all the process print "YES" (Without quotes).
Else print "NO" (Without quotes).
Sample Input
3 2 3 1 2 1 3 3 3 2 2 1 1 3
Sample Output
YES NO
Source
BestCoder Round #25
/*
我无语,,一道拓扑排序判环题,,,没清空。。。。WA了四发,,无语。。。以后还怎么敢用vector呢?
Time:2015-1-3 21:26
*/
#include<cstdio>
#include<cstring>
#include<queue>
#include<vector>
#include<algorithm>
using namespace std;
const int MAX=1000+10;
vector<int>v[MAX];
int in[MAX];
int n,m;
bool topSort(){
queue<int>q;
while(!q.empty())q.pop();
for(int i=1;i<=n;i++){
if(in[i]==0)q.push(i);
}int num=0;
while(!q.empty()){
int u=q.front();q.pop();
num++;
int k=v[u].size();
for(int i=0;i<k;i++){
int tmp=v[u][i];
if(--in[tmp]==0){
q.push(tmp);
}
}
}
if(num<n)return false;
return true;
}
//bool vis[MAX][MAX];
int main(){
int a,b;
while(scanf("%d%d",&n,&m)!=EOF){
memset(in,0,sizeof(in));
//memset(vis,0,sizeof(vis));
for(int i=1;i<=n;i++){
if(v[i].size())v[i].clear();
}
for(int i=0;i<m;i++){
scanf("%d%d",&a,&b);
//if(vis[b][a])continue;
// vis[b][a]=true;
v[b].push_back(a);
in[a]++;
}
if(topSort()){
puts("YES");
}else{
puts("NO");
}
}
return 0;
}
本文介绍了一个基于魔法计算机处理任务的问题,通过拓扑排序算法判断任务依赖关系中是否存在环,以此来确定所有任务是否能被成功处理。文章提供了一个C++实现示例。
1079

被折叠的 条评论
为什么被折叠?



